See axolotl config
axolotl version: 0.6.0
base_model: Qwen/Qwen2.5-7B
hub_model_id: sumuks/purple-wintermute-0.2-7b
trust_remote_code: true
load_in_8bit: false
load_in_4bit: false
strict: false
bf16: true
hf_use_auth_token: true
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_glu_activation: true
liger_layer_norm: true
liger_fused_linear_cross_entropy: true
save_safetensors:
datasets:
- path: sumuks/openreview_wintermute_0.2_training_data
type: completion
field: text
dataset_prepared_path: .axolotl_cache_data/wintermute_0.2
shuffle_merged_datasets: true
# dataset_exact_deduplication: true
val_set_size: 0.005
output_dir: ./../../outputs/purple-wintermute-0.2-7b
push_dataset_to_hub: sumuks/purple_wintermute_0.2_training_data_in_progress
sequence_length: 2048
sample_packing: true
pad_to_sequence_len: true
adapter: lora
lora_r: 256
lora_alpha: 32
lora_dropout: 0.05
peft_use_rslora: true
lora_target_linear: true
gradient_accumulation_steps: 4
micro_batch_size: 16
eval_batch_size: 1
num_epochs: 3
learning_rate: 5e-5
warmup_ratio: 0.05
evals_per_epoch: 5
saves_per_epoch: 5
gradient_checkpointing: true
lr_scheduler: cosine
optimizer: paged_adamw_8bit
profiler_steps: 100
save_safetensors: true
train_on_inputs: true
wandb_project: wintermute
wandb_name: purple-wintermute-0.2-7b
deepspeed: deepspeed_configs/zero1.json
purple-wintermute-0.2-7b
This model is a fine-tuned version of Qwen/Qwen2.5-7B on the sumuks/openreview_wintermute_0.2_training_data dataset. It achieves the following results on the evaluation set:
- Loss: 1.3961
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- total_eval_batch_size: 4
- optimizer: Use paged_adamw_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 389
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0004 | 1 | 2.6905 |
1.6977 | 0.2002 | 519 | 1.8454 |
1.5955 | 0.4004 | 1038 | 1.7875 |
1.4268 | 0.6006 | 1557 | 1.7164 |
1.2613 | 0.8008 | 2076 | 1.6061 |
1.1526 | 1.0012 | 2595 | 1.5174 |
1.0637 | 1.2014 | 3114 | 1.4811 |
1.0251 | 1.4015 | 3633 | 1.4466 |
0.9791 | 1.6017 | 4152 | 1.4230 |
0.9609 | 1.8019 | 4671 | 1.4072 |
1.0291 | 2.0023 | 5190 | 1.3994 |
0.917 | 2.2025 | 5709 | 1.4018 |
0.9306 | 2.4027 | 6228 | 1.3995 |
0.8935 | 2.6029 | 6747 | 1.3963 |
0.9343 | 2.8031 | 7266 | 1.3961 |
Framework versions
- PEFT 0.14.0
- Transformers 4.47.1
- Pytorch 2.5.1
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 39
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.
Model tree for sumuks/purple-wintermute-0.2-7b
Base model
Qwen/Qwen2.5-7B