results / README.md
teguhteja's picture
End of training
968a29a verified
metadata
library_name: transformers
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: results
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.48125

results

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5240
  • Accuracy: 0.4813

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 80 2.0769 0.1562
No log 2.0 160 2.0542 0.2125
No log 3.0 240 1.9931 0.3125
No log 4.0 320 1.8756 0.2938
No log 5.0 400 1.6917 0.3875
No log 6.0 480 1.5471 0.4188
1.7305 7.0 560 1.4615 0.4562
1.7305 8.0 640 1.4356 0.4688
1.7305 9.0 720 1.3676 0.4875
1.7305 10.0 800 1.4125 0.5062
1.7305 11.0 880 1.5065 0.4688
1.7305 12.0 960 1.5047 0.4938
0.3363 13.0 1040 1.5180 0.4875
0.3363 14.0 1120 1.5228 0.4813
0.3363 15.0 1200 1.5240 0.4813

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.5.1+cu124
  • Datasets 3.3.2
  • Tokenizers 0.21.0