morriszms's picture
Upload folder using huggingface_hub
aae8570 verified
metadata
tags:
  - chat
  - TensorBlock
  - GGUF
base_model: Goekdeniz-Guelmez/Josiefied-DeepSeek-R1-0528-Qwen3-8B-abliterated-v1
pipeline_tag: text-generation
TensorBlock

Website Twitter Discord GitHub Telegram

Goekdeniz-Guelmez/Josiefied-DeepSeek-R1-0528-Qwen3-8B-abliterated-v1 - GGUF

This repo contains GGUF format model files for Goekdeniz-Guelmez/Josiefied-DeepSeek-R1-0528-Qwen3-8B-abliterated-v1.

The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b5753.

Our projects

Forge
Forge Project
An OpenAI-compatible multi-provider routing layer.
🚀 Try it now! 🚀
Awesome MCP Servers TensorBlock Studio
MCP Servers Studio
A comprehensive collection of Model Context Protocol (MCP) servers. A lightweight, open, and extensible multi-LLM interaction studio.
👀 See what we built 👀 👀 See what we built 👀

Prompt template

<|begin▁of▁sentence|>{system_prompt}<|User|>{prompt}<|Assistant|>

Model file specification

Filename Quant type File Size Description
Josiefied-DeepSeek-R1-0528-Qwen3-8B-abliterated-v1-Q2_K.gguf Q2_K 3.282 GB smallest, significant quality loss - not recommended for most purposes
Josiefied-DeepSeek-R1-0528-Qwen3-8B-abliterated-v1-Q3_K_S.gguf Q3_K_S 3.770 GB very small, high quality loss
Josiefied-DeepSeek-R1-0528-Qwen3-8B-abliterated-v1-Q3_K_M.gguf Q3_K_M 4.124 GB very small, high quality loss
Josiefied-DeepSeek-R1-0528-Qwen3-8B-abliterated-v1-Q3_K_L.gguf Q3_K_L 4.431 GB small, substantial quality loss
Josiefied-DeepSeek-R1-0528-Qwen3-8B-abliterated-v1-Q4_0.gguf Q4_0 4.775 GB legacy; small, very high quality loss - prefer using Q3_K_M
Josiefied-DeepSeek-R1-0528-Qwen3-8B-abliterated-v1-Q4_K_S.gguf Q4_K_S 4.802 GB small, greater quality loss
Josiefied-DeepSeek-R1-0528-Qwen3-8B-abliterated-v1-Q4_K_M.gguf Q4_K_M 5.028 GB medium, balanced quality - recommended
Josiefied-DeepSeek-R1-0528-Qwen3-8B-abliterated-v1-Q5_0.gguf Q5_0 5.721 GB legacy; medium, balanced quality - prefer using Q4_K_M
Josiefied-DeepSeek-R1-0528-Qwen3-8B-abliterated-v1-Q5_K_S.gguf Q5_K_S 5.721 GB large, low quality loss - recommended
Josiefied-DeepSeek-R1-0528-Qwen3-8B-abliterated-v1-Q5_K_M.gguf Q5_K_M 5.851 GB large, very low quality loss - recommended
Josiefied-DeepSeek-R1-0528-Qwen3-8B-abliterated-v1-Q6_K.gguf Q6_K 6.726 GB very large, extremely low quality loss
Josiefied-DeepSeek-R1-0528-Qwen3-8B-abliterated-v1-Q8_0.gguf Q8_0 8.710 GB very large, extremely low quality loss - not recommended

Downloading instruction

Command line

Firstly, install Huggingface Client

pip install -U "huggingface_hub[cli]"

Then, downoad the individual model file the a local directory

huggingface-cli download tensorblock/Goekdeniz-Guelmez_Josiefied-DeepSeek-R1-0528-Qwen3-8B-abliterated-v1-GGUF --include "Josiefied-DeepSeek-R1-0528-Qwen3-8B-abliterated-v1-Q2_K.gguf" --local-dir MY_LOCAL_DIR

If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf), you can try:

huggingface-cli download tensorblock/Goekdeniz-Guelmez_Josiefied-DeepSeek-R1-0528-Qwen3-8B-abliterated-v1-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'