File size: 1,898 Bytes
7e1d287
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e25cc77
 
7e1d287
 
 
 
 
 
 
e25cc77
7e1d287
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bdb5aa1
 
 
 
 
 
7e1d287
 
 
 
 
 
 
e25cc77
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
language:
- tr
base_model:
- artiwise-ai/modernbert-base-tr-uncased
pipeline_tag: text-classification
library_name: transformers
license: mit
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: ModernBERT-Sentiment-Classifier
  results: []
datasets:
- winvoker/turkish-sentiment-analysis-dataset
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# ModernBERT-Turkish-Sentiment-Classifier

This model is a fine-tuned version of artiwise-ai/modernbert-base-tr-uncased on a Sentiment Analysis dataset winvoker/turkish-sentiment-analysis-dataset.
It achieves the following results on the evaluation set:
- Loss: 0.280550
- Accuracy: 0.956000
- Precision: 0.956370
- Recall: 0.956000
- F1: 0.956175

## Training and evaluation data

The data cannot be shared.

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Epoch | Training Loss | Validation Loss | Accuracy | Precision | Recall | F1 Score |
|-------|---------------|-----------------|----------|-----------|--------|----------|
| 1     | 0.161400      | 0.163402        | 0.945000 | 0.945220  | 0.945000 | 0.945107 |
| 2     | 0.034400      | 0.286277        | 0.942000 | 0.949040  | 0.942000 | 0.944231 |
| 3     | 0.003100      | 0.280550        | 0.956000 | 0.956370  | 0.956000 | 0.956170 |



### Framework versions

- Transformers 4.52.2
- Pytorch 2.6.0+cu124
- Datasets 2.14.4
- Tokenizers 0.21.1