File size: 1,898 Bytes
7e1d287 e25cc77 7e1d287 e25cc77 7e1d287 bdb5aa1 7e1d287 e25cc77 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
---
language:
- tr
base_model:
- artiwise-ai/modernbert-base-tr-uncased
pipeline_tag: text-classification
library_name: transformers
license: mit
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: ModernBERT-Sentiment-Classifier
results: []
datasets:
- winvoker/turkish-sentiment-analysis-dataset
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ModernBERT-Turkish-Sentiment-Classifier
This model is a fine-tuned version of artiwise-ai/modernbert-base-tr-uncased on a Sentiment Analysis dataset winvoker/turkish-sentiment-analysis-dataset.
It achieves the following results on the evaluation set:
- Loss: 0.280550
- Accuracy: 0.956000
- Precision: 0.956370
- Recall: 0.956000
- F1: 0.956175
## Training and evaluation data
The data cannot be shared.
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Epoch | Training Loss | Validation Loss | Accuracy | Precision | Recall | F1 Score |
|-------|---------------|-----------------|----------|-----------|--------|----------|
| 1 | 0.161400 | 0.163402 | 0.945000 | 0.945220 | 0.945000 | 0.945107 |
| 2 | 0.034400 | 0.286277 | 0.942000 | 0.949040 | 0.942000 | 0.944231 |
| 3 | 0.003100 | 0.280550 | 0.956000 | 0.956370 | 0.956000 | 0.956170 |
### Framework versions
- Transformers 4.52.2
- Pytorch 2.6.0+cu124
- Datasets 2.14.4
- Tokenizers 0.21.1 |