|
--- |
|
library_name: transformers |
|
pipeline_tag: text-generation |
|
inference: true |
|
widget: |
|
- text: Hello! |
|
example_title: Hello world |
|
group: Python |
|
--- |
|
|
|
This tiny model is for debugging. It is randomly initialized with the config adapted from [meta-llama/Llama-3.3-70B-Instruct](https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct). |
|
|
|
### Example usage: |
|
|
|
```python |
|
from transformers import pipeline |
|
model_id = "tiny-random/llama-3.3-dim64" |
|
pipe = pipeline( |
|
"text-generation", model=model_id, device="cuda", |
|
trust_remote_code=True, max_new_tokens=3, |
|
) |
|
print(pipe("Hello World!")) |
|
``` |
|
|
|
### Codes to create this repo: |
|
|
|
```python |
|
import torch |
|
|
|
from transformers import ( |
|
AutoConfig, |
|
AutoModelForCausalLM, |
|
AutoTokenizer, |
|
GenerationConfig, |
|
pipeline, |
|
set_seed, |
|
) |
|
|
|
source_model_id = "meta-llama/Llama-3.3-70B-Instruct" |
|
save_folder = "/tmp/tiny-random/llama-3.3-dim64" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained( |
|
source_model_id, trust_remote_code=True, |
|
) |
|
tokenizer.save_pretrained(save_folder) |
|
|
|
config = AutoConfig.from_pretrained( |
|
source_model_id, trust_remote_code=True, |
|
) |
|
config.hidden_size = 64 |
|
config.intermediate_size = 128 |
|
config.num_attention_heads = 2 |
|
config.num_key_value_heads = 1 |
|
config.head_dim = 32 |
|
config.num_hidden_layers = 2 |
|
config.tie_word_embeddings = True |
|
|
|
model = AutoModelForCausalLM.from_config( |
|
config, |
|
torch_dtype=torch.bfloat16, |
|
trust_remote_code=True, |
|
) |
|
model.generation_config = GenerationConfig.from_pretrained( |
|
source_model_id, trust_remote_code=True, |
|
) |
|
set_seed(42) |
|
with torch.no_grad(): |
|
for name, p in sorted(model.named_parameters()): |
|
torch.nn.init.normal_(p, 0, 0.2) |
|
print(name, p.shape) |
|
model.save_pretrained(save_folder) |
|
``` |
|
|
|
### Printing the model: |
|
|
|
```text |
|
LlamaForCausalLM( |
|
(model): LlamaModel( |
|
(embed_tokens): Embedding(128256, 64) |
|
(layers): ModuleList( |
|
(0-1): 2 x LlamaDecoderLayer( |
|
(self_attn): LlamaAttention( |
|
(q_proj): Linear(in_features=64, out_features=64, bias=False) |
|
(k_proj): Linear(in_features=64, out_features=32, bias=False) |
|
(v_proj): Linear(in_features=64, out_features=32, bias=False) |
|
(o_proj): Linear(in_features=64, out_features=64, bias=False) |
|
) |
|
(mlp): LlamaMLP( |
|
(gate_proj): Linear(in_features=64, out_features=128, bias=False) |
|
(up_proj): Linear(in_features=64, out_features=128, bias=False) |
|
(down_proj): Linear(in_features=128, out_features=64, bias=False) |
|
(act_fn): SiLU() |
|
) |
|
(input_layernorm): LlamaRMSNorm((64,), eps=1e-05) |
|
(post_attention_layernorm): LlamaRMSNorm((64,), eps=1e-05) |
|
) |
|
) |
|
(norm): LlamaRMSNorm((64,), eps=1e-05) |
|
(rotary_emb): LlamaRotaryEmbedding() |
|
) |
|
(lm_head): Linear(in_features=64, out_features=128256, bias=False) |
|
) |
|
``` |