Sparse CSR model trained on Natural Questions
	
This is a CSR Sparse Encoder model finetuned from mixedbread-ai/mxbai-embed-large-v1 on the natural-questions dataset using the sentence-transformers library. It maps sentences & paragraphs to a 4096-dimensional sparse vector space  with 256 maximum active dimensions  and can be used for semantic search and sparse retrieval.
	
		
	
	
		Model Details
	
	
		
	
	
		Model Description
	
- Model Type: CSR Sparse Encoder
 
- Base model: mixedbread-ai/mxbai-embed-large-v1 
 
- Maximum Sequence Length: 512 tokens
 
- Output Dimensionality: 4096 dimensions (trained with 256 maximum active dimensions)
 
- Similarity Function: Dot Product
 
- Training Dataset:
 
- Language: en
 
- License: apache-2.0
 
	
		
	
	
		Model Sources
	
	
		
	
	
		Full Model Architecture
	
SparseEncoder(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): CSRSparsity({'input_dim': 1024, 'hidden_dim': 4096, 'k': 256, 'k_aux': 512, 'normalize': False, 'dead_threshold': 30})
)
	
		
	
	
		Usage
	
	
		
	
	
		Direct Usage (Sentence Transformers)
	
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SparseEncoder
model = SparseEncoder("tomaarsen/csr-mxbai-embed-large-v1-nq-updated-reconstruction-4")
queries = [
    "who is cornelius in the book of acts",
]
documents = [
    'Cornelius the Centurion Cornelius (Greek: Κορνήλιος) was a Roman centurion who is considered by Christians to be one of the first Gentiles to convert to the faith, as related in Acts of the Apostles.',
    "Joe Ranft Ranft reunited with Lasseter when he was hired by Pixar in 1991 as their head of story.[1] There he worked on all of their films produced up to 2006; this included Toy Story (for which he received an Academy Award nomination) and A Bug's Life, as the co-story writer and others as story supervisor. His final film was Cars. He also voiced characters in many of the films, including Heimlich the caterpillar in A Bug's Life, Wheezy the penguin in Toy Story 2, and Jacques the shrimp in Finding Nemo.[1]",
    'Wonderful Tonight "Wonderful Tonight" is a ballad written by Eric Clapton. It was included on Clapton\'s 1977 album Slowhand. Clapton wrote the song about Pattie Boyd.[1] The female vocal harmonies on the song are provided by Marcella Detroit (then Marcy Levy) and Yvonne Elliman.',
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
	
		
	
	
		Evaluation
	
	
		
	
	
		Metrics
	
	
		
	
	
		Sparse Information Retrieval
	
	
		
| Metric | 
Value | 
		
| dot_accuracy@1 | 
0.16 | 
| dot_accuracy@3 | 
0.2 | 
| dot_accuracy@5 | 
0.28 | 
| dot_accuracy@10 | 
0.4 | 
| dot_precision@1 | 
0.16 | 
| dot_precision@3 | 
0.0667 | 
| dot_precision@5 | 
0.056 | 
| dot_precision@10 | 
0.04 | 
| dot_recall@1 | 
0.16 | 
| dot_recall@3 | 
0.2 | 
| dot_recall@5 | 
0.28 | 
| dot_recall@10 | 
0.4 | 
| dot_ndcg@10 | 
0.2553 | 
| dot_mrr@10 | 
0.2125 | 
| dot_map@100 | 
0.2276 | 
| query_active_dims | 
8.0 | 
| query_sparsity_ratio | 
0.998 | 
| corpus_active_dims | 
8.0 | 
| corpus_sparsity_ratio | 
0.998 | 
	
 
	
		
	
	
		Sparse Nano BEIR
	
	
		
| Metric | 
Value | 
		
| dot_accuracy@1 | 
0.16 | 
| dot_accuracy@3 | 
0.2 | 
| dot_accuracy@5 | 
0.28 | 
| dot_accuracy@10 | 
0.4 | 
| dot_precision@1 | 
0.16 | 
| dot_precision@3 | 
0.0667 | 
| dot_precision@5 | 
0.056 | 
| dot_precision@10 | 
0.04 | 
| dot_recall@1 | 
0.16 | 
| dot_recall@3 | 
0.2 | 
| dot_recall@5 | 
0.28 | 
| dot_recall@10 | 
0.4 | 
| dot_ndcg@10 | 
0.2553 | 
| dot_mrr@10 | 
0.2125 | 
| dot_map@100 | 
0.2276 | 
| query_active_dims | 
8.0 | 
| query_sparsity_ratio | 
0.998 | 
| corpus_active_dims | 
8.0 | 
| corpus_sparsity_ratio | 
0.998 | 
	
 
	
		
	
	
		Sparse Information Retrieval
	
	
		
| Metric | 
Value | 
		
| dot_accuracy@1 | 
0.24 | 
| dot_accuracy@3 | 
0.38 | 
| dot_accuracy@5 | 
0.5 | 
| dot_accuracy@10 | 
0.58 | 
| dot_precision@1 | 
0.24 | 
| dot_precision@3 | 
0.1267 | 
| dot_precision@5 | 
0.1 | 
| dot_precision@10 | 
0.058 | 
| dot_recall@1 | 
0.24 | 
| dot_recall@3 | 
0.38 | 
| dot_recall@5 | 
0.5 | 
| dot_recall@10 | 
0.58 | 
| dot_ndcg@10 | 
0.3971 | 
| dot_mrr@10 | 
0.3401 | 
| dot_map@100 | 
0.353 | 
| query_active_dims | 
16.0 | 
| query_sparsity_ratio | 
0.9961 | 
| corpus_active_dims | 
16.0 | 
| corpus_sparsity_ratio | 
0.9961 | 
	
 
	
		
	
	
		Sparse Nano BEIR
	
	
		
| Metric | 
Value | 
		
| dot_accuracy@1 | 
0.24 | 
| dot_accuracy@3 | 
0.38 | 
| dot_accuracy@5 | 
0.5 | 
| dot_accuracy@10 | 
0.58 | 
| dot_precision@1 | 
0.24 | 
| dot_precision@3 | 
0.1267 | 
| dot_precision@5 | 
0.1 | 
| dot_precision@10 | 
0.058 | 
| dot_recall@1 | 
0.24 | 
| dot_recall@3 | 
0.38 | 
| dot_recall@5 | 
0.5 | 
| dot_recall@10 | 
0.58 | 
| dot_ndcg@10 | 
0.3971 | 
| dot_mrr@10 | 
0.3401 | 
| dot_map@100 | 
0.353 | 
| query_active_dims | 
16.0 | 
| query_sparsity_ratio | 
0.9961 | 
| corpus_active_dims | 
16.0 | 
| corpus_sparsity_ratio | 
0.9961 | 
	
 
	
		
	
	
		Sparse Information Retrieval
	
	
		
| Metric | 
Value | 
		
| dot_accuracy@1 | 
0.3 | 
| dot_accuracy@3 | 
0.46 | 
| dot_accuracy@5 | 
0.62 | 
| dot_accuracy@10 | 
0.7 | 
| dot_precision@1 | 
0.3 | 
| dot_precision@3 | 
0.1533 | 
| dot_precision@5 | 
0.124 | 
| dot_precision@10 | 
0.07 | 
| dot_recall@1 | 
0.3 | 
| dot_recall@3 | 
0.46 | 
| dot_recall@5 | 
0.62 | 
| dot_recall@10 | 
0.7 | 
| dot_ndcg@10 | 
0.4873 | 
| dot_mrr@10 | 
0.4206 | 
| dot_map@100 | 
0.4326 | 
| query_active_dims | 
32.0 | 
| query_sparsity_ratio | 
0.9922 | 
| corpus_active_dims | 
32.0 | 
| corpus_sparsity_ratio | 
0.9922 | 
	
 
	
		
	
	
		Sparse Nano BEIR
	
	
		
| Metric | 
Value | 
		
| dot_accuracy@1 | 
0.3 | 
| dot_accuracy@3 | 
0.46 | 
| dot_accuracy@5 | 
0.62 | 
| dot_accuracy@10 | 
0.7 | 
| dot_precision@1 | 
0.3 | 
| dot_precision@3 | 
0.1533 | 
| dot_precision@5 | 
0.124 | 
| dot_precision@10 | 
0.07 | 
| dot_recall@1 | 
0.3 | 
| dot_recall@3 | 
0.46 | 
| dot_recall@5 | 
0.62 | 
| dot_recall@10 | 
0.7 | 
| dot_ndcg@10 | 
0.4873 | 
| dot_mrr@10 | 
0.4206 | 
| dot_map@100 | 
0.4326 | 
| query_active_dims | 
32.0 | 
| query_sparsity_ratio | 
0.9922 | 
| corpus_active_dims | 
32.0 | 
| corpus_sparsity_ratio | 
0.9922 | 
	
 
	
		
	
	
		Sparse Information Retrieval
	
	
		
| Metric | 
Value | 
		
| dot_accuracy@1 | 
0.42 | 
| dot_accuracy@3 | 
0.6 | 
| dot_accuracy@5 | 
0.68 | 
| dot_accuracy@10 | 
0.78 | 
| dot_precision@1 | 
0.42 | 
| dot_precision@3 | 
0.2 | 
| dot_precision@5 | 
0.136 | 
| dot_precision@10 | 
0.078 | 
| dot_recall@1 | 
0.42 | 
| dot_recall@3 | 
0.6 | 
| dot_recall@5 | 
0.68 | 
| dot_recall@10 | 
0.78 | 
| dot_ndcg@10 | 
0.5911 | 
| dot_mrr@10 | 
0.5317 | 
| dot_map@100 | 
0.5406 | 
| query_active_dims | 
64.0 | 
| query_sparsity_ratio | 
0.9844 | 
| corpus_active_dims | 
64.0 | 
| corpus_sparsity_ratio | 
0.9844 | 
	
 
	
		
	
	
		Sparse Nano BEIR
	
	
		
| Metric | 
Value | 
		
| dot_accuracy@1 | 
0.42 | 
| dot_accuracy@3 | 
0.6 | 
| dot_accuracy@5 | 
0.68 | 
| dot_accuracy@10 | 
0.78 | 
| dot_precision@1 | 
0.42 | 
| dot_precision@3 | 
0.2 | 
| dot_precision@5 | 
0.136 | 
| dot_precision@10 | 
0.078 | 
| dot_recall@1 | 
0.42 | 
| dot_recall@3 | 
0.6 | 
| dot_recall@5 | 
0.68 | 
| dot_recall@10 | 
0.78 | 
| dot_ndcg@10 | 
0.5911 | 
| dot_mrr@10 | 
0.5317 | 
| dot_map@100 | 
0.5406 | 
| query_active_dims | 
64.0 | 
| query_sparsity_ratio | 
0.9844 | 
| corpus_active_dims | 
64.0 | 
| corpus_sparsity_ratio | 
0.9844 | 
	
 
	
		
	
	
		Sparse Information Retrieval
	
	
		
| Metric | 
Value | 
		
| dot_accuracy@1 | 
0.36 | 
| dot_accuracy@3 | 
0.64 | 
| dot_accuracy@5 | 
0.72 | 
| dot_accuracy@10 | 
0.82 | 
| dot_precision@1 | 
0.36 | 
| dot_precision@3 | 
0.2133 | 
| dot_precision@5 | 
0.144 | 
| dot_precision@10 | 
0.082 | 
| dot_recall@1 | 
0.36 | 
| dot_recall@3 | 
0.64 | 
| dot_recall@5 | 
0.72 | 
| dot_recall@10 | 
0.82 | 
| dot_ndcg@10 | 
0.5877 | 
| dot_mrr@10 | 
0.5139 | 
| dot_map@100 | 
0.5217 | 
| query_active_dims | 
128.0 | 
| query_sparsity_ratio | 
0.9688 | 
| corpus_active_dims | 
128.0 | 
| corpus_sparsity_ratio | 
0.9688 | 
	
 
	
		
	
	
		Sparse Nano BEIR
	
	
		
| Metric | 
Value | 
		
| dot_accuracy@1 | 
0.36 | 
| dot_accuracy@3 | 
0.64 | 
| dot_accuracy@5 | 
0.72 | 
| dot_accuracy@10 | 
0.82 | 
| dot_precision@1 | 
0.36 | 
| dot_precision@3 | 
0.2133 | 
| dot_precision@5 | 
0.144 | 
| dot_precision@10 | 
0.082 | 
| dot_recall@1 | 
0.36 | 
| dot_recall@3 | 
0.64 | 
| dot_recall@5 | 
0.72 | 
| dot_recall@10 | 
0.82 | 
| dot_ndcg@10 | 
0.5877 | 
| dot_mrr@10 | 
0.5139 | 
| dot_map@100 | 
0.5217 | 
| query_active_dims | 
128.0 | 
| query_sparsity_ratio | 
0.9688 | 
| corpus_active_dims | 
128.0 | 
| corpus_sparsity_ratio | 
0.9688 | 
	
 
	
		
	
	
		Sparse Information Retrieval
	
	
		
| Metric | 
Value | 
		
| dot_accuracy@1 | 
0.42 | 
| dot_accuracy@3 | 
0.64 | 
| dot_accuracy@5 | 
0.74 | 
| dot_accuracy@10 | 
0.82 | 
| dot_precision@1 | 
0.42 | 
| dot_precision@3 | 
0.2133 | 
| dot_precision@5 | 
0.148 | 
| dot_precision@10 | 
0.082 | 
| dot_recall@1 | 
0.42 | 
| dot_recall@3 | 
0.64 | 
| dot_recall@5 | 
0.74 | 
| dot_recall@10 | 
0.82 | 
| dot_ndcg@10 | 
0.6247 | 
| dot_mrr@10 | 
0.5612 | 
| dot_map@100 | 
0.5701 | 
| query_active_dims | 
256.0 | 
| query_sparsity_ratio | 
0.9375 | 
| corpus_active_dims | 
256.0 | 
| corpus_sparsity_ratio | 
0.9375 | 
	
 
	
		
	
	
		Sparse Nano BEIR
	
	
		
| Metric | 
Value | 
		
| dot_accuracy@1 | 
0.42 | 
| dot_accuracy@3 | 
0.64 | 
| dot_accuracy@5 | 
0.74 | 
| dot_accuracy@10 | 
0.82 | 
| dot_precision@1 | 
0.42 | 
| dot_precision@3 | 
0.2133 | 
| dot_precision@5 | 
0.148 | 
| dot_precision@10 | 
0.082 | 
| dot_recall@1 | 
0.42 | 
| dot_recall@3 | 
0.64 | 
| dot_recall@5 | 
0.74 | 
| dot_recall@10 | 
0.82 | 
| dot_ndcg@10 | 
0.6247 | 
| dot_mrr@10 | 
0.5612 | 
| dot_map@100 | 
0.5701 | 
| query_active_dims | 
256.0 | 
| query_sparsity_ratio | 
0.9375 | 
| corpus_active_dims | 
256.0 | 
| corpus_sparsity_ratio | 
0.9375 | 
	
 
	
		
	
	
		Sparse Information Retrieval
	
- Datasets: 
NanoClimateFEVER, NanoDBPedia, NanoFEVER, NanoFiQA2018, NanoHotpotQA, NanoMSMARCO, NanoNFCorpus, NanoNQ, NanoQuoraRetrieval, NanoSCIDOCS, NanoArguAna, NanoSciFact and NanoTouche2020 
- Evaluated with 
SparseInformationRetrievalEvaluator 
	
		
| Metric | 
NanoClimateFEVER | 
NanoDBPedia | 
NanoFEVER | 
NanoFiQA2018 | 
NanoHotpotQA | 
NanoMSMARCO | 
NanoNFCorpus | 
NanoNQ | 
NanoQuoraRetrieval | 
NanoSCIDOCS | 
NanoArguAna | 
NanoSciFact | 
NanoTouche2020 | 
		
| dot_accuracy@1 | 
0.36 | 
0.8 | 
0.9 | 
0.56 | 
0.76 | 
0.42 | 
0.44 | 
0.5 | 
0.92 | 
0.56 | 
0.36 | 
0.7 | 
0.5306 | 
| dot_accuracy@3 | 
0.52 | 
0.88 | 
0.92 | 
0.7 | 
0.9 | 
0.64 | 
0.56 | 
0.72 | 
0.96 | 
0.76 | 
0.78 | 
0.8 | 
0.8367 | 
| dot_accuracy@5 | 
0.66 | 
0.92 | 
0.96 | 
0.72 | 
0.94 | 
0.76 | 
0.6 | 
0.76 | 
1.0 | 
0.78 | 
0.84 | 
0.82 | 
0.898 | 
| dot_accuracy@10 | 
0.8 | 
0.94 | 
0.96 | 
0.72 | 
0.94 | 
0.82 | 
0.74 | 
0.84 | 
1.0 | 
0.88 | 
0.94 | 
0.88 | 
0.9796 | 
| dot_precision@1 | 
0.36 | 
0.8 | 
0.9 | 
0.56 | 
0.76 | 
0.42 | 
0.44 | 
0.5 | 
0.92 | 
0.56 | 
0.36 | 
0.7 | 
0.5306 | 
| dot_precision@3 | 
0.2 | 
0.6 | 
0.3267 | 
0.32 | 
0.5 | 
0.2133 | 
0.3533 | 
0.2467 | 
0.4 | 
0.4 | 
0.26 | 
0.2867 | 
0.5306 | 
| dot_precision@5 | 
0.156 | 
0.58 | 
0.204 | 
0.236 | 
0.316 | 
0.152 | 
0.32 | 
0.16 | 
0.268 | 
0.292 | 
0.168 | 
0.184 | 
0.5143 | 
| dot_precision@10 | 
0.114 | 
0.484 | 
0.102 | 
0.13 | 
0.172 | 
0.082 | 
0.272 | 
0.088 | 
0.138 | 
0.21 | 
0.094 | 
0.1 | 
0.4347 | 
| dot_recall@1 | 
0.1573 | 
0.0936 | 
0.8467 | 
0.2992 | 
0.38 | 
0.42 | 
0.0352 | 
0.48 | 
0.7973 | 
0.1187 | 
0.36 | 
0.665 | 
0.0367 | 
| dot_recall@3 | 
0.2473 | 
0.1618 | 
0.8933 | 
0.4673 | 
0.75 | 
0.64 | 
0.0765 | 
0.67 | 
0.922 | 
0.2497 | 
0.78 | 
0.79 | 
0.1112 | 
| dot_recall@5 | 
0.313 | 
0.2269 | 
0.9333 | 
0.5337 | 
0.79 | 
0.76 | 
0.116 | 
0.72 | 
0.9893 | 
0.3027 | 
0.84 | 
0.81 | 
0.175 | 
| dot_recall@10 | 
0.438 | 
0.3304 | 
0.9333 | 
0.5473 | 
0.86 | 
0.82 | 
0.1593 | 
0.79 | 
0.996 | 
0.4317 | 
0.94 | 
0.88 | 
0.2873 | 
| dot_ndcg@10 | 
0.3566 | 
0.6072 | 
0.9081 | 
0.5253 | 
0.7911 | 
0.6248 | 
0.3345 | 
0.648 | 
0.9494 | 
0.4266 | 
0.6675 | 
0.7776 | 
0.478 | 
| dot_mrr@10 | 
0.4796 | 
0.852 | 
0.92 | 
0.6317 | 
0.8333 | 
0.5614 | 
0.5148 | 
0.6163 | 
0.9457 | 
0.6682 | 
0.5782 | 
0.7519 | 
0.7052 | 
| dot_map@100 | 
0.2782 | 
0.4541 | 
0.8921 | 
0.48 | 
0.7411 | 
0.5703 | 
0.1544 | 
0.6035 | 
0.9286 | 
0.3386 | 
0.5803 | 
0.7421 | 
0.3659 | 
| query_active_dims | 
256.0 | 
256.0 | 
256.0 | 
256.0 | 
256.0 | 
256.0 | 
256.0 | 
256.0 | 
256.0 | 
256.0 | 
256.0 | 
256.0 | 
256.0 | 
| query_sparsity_ratio | 
0.9375 | 
0.9375 | 
0.9375 | 
0.9375 | 
0.9375 | 
0.9375 | 
0.9375 | 
0.9375 | 
0.9375 | 
0.9375 | 
0.9375 | 
0.9375 | 
0.9375 | 
| corpus_active_dims | 
256.0 | 
256.0 | 
256.0 | 
256.0 | 
256.0 | 
256.0 | 
256.0 | 
256.0 | 
256.0 | 
256.0 | 
256.0 | 
256.0 | 
256.0 | 
| corpus_sparsity_ratio | 
0.9375 | 
0.9375 | 
0.9375 | 
0.9375 | 
0.9375 | 
0.9375 | 
0.9375 | 
0.9375 | 
0.9375 | 
0.9375 | 
0.9375 | 
0.9375 | 
0.9375 | 
	
 
	
		
	
	
		Sparse Nano BEIR
	
- Dataset: 
NanoBEIR_mean 
- Evaluated with 
SparseNanoBEIREvaluator with these parameters:{
    "dataset_names": [
        "climatefever",
        "dbpedia",
        "fever",
        "fiqa2018",
        "hotpotqa",
        "msmarco",
        "nfcorpus",
        "nq",
        "quoraretrieval",
        "scidocs",
        "arguana",
        "scifact",
        "touche2020"
    ]
}
 
	
		
| Metric | 
Value | 
		
| dot_accuracy@1 | 
0.6008 | 
| dot_accuracy@3 | 
0.7674 | 
| dot_accuracy@5 | 
0.8198 | 
| dot_accuracy@10 | 
0.88 | 
| dot_precision@1 | 
0.6008 | 
| dot_precision@3 | 
0.3567 | 
| dot_precision@5 | 
0.2731 | 
| dot_precision@10 | 
0.1862 | 
| dot_recall@1 | 
0.3608 | 
| dot_recall@3 | 
0.5199 | 
| dot_recall@5 | 
0.5777 | 
| dot_recall@10 | 
0.6472 | 
| dot_ndcg@10 | 
0.6227 | 
| dot_mrr@10 | 
0.6968 | 
| dot_map@100 | 
0.5484 | 
| query_active_dims | 
256.0 | 
| query_sparsity_ratio | 
0.9375 | 
| corpus_active_dims | 
256.0 | 
| corpus_sparsity_ratio | 
0.9375 | 
	
 
	
		
	
	
		Training Details
	
	
		
	
	
		Training Dataset
	
	
		
	
	
		natural-questions
	
- Dataset: natural-questions at f9e894e
 
- Size: 99,000 training samples
 
- Columns: 
query and answer 
- Approximate statistics based on the first 1000 samples:
	
		
 | 
query | 
answer | 
		
| type | 
string | 
string | 
| details | 
- min: 10 tokens
 - mean: 11.71 tokens
 - max: 26 tokens
 
  | 
- min: 4 tokens
 - mean: 131.81 tokens
 - max: 450 tokens
 
  | 
	
 
 
- Samples:
	
		
| query | 
answer | 
		
who played the father in papa don't preach | 
Alex McArthur Alex McArthur (born March 6, 1957) is an American actor. | 
where was the location of the battle of hastings | 
Battle of Hastings The Battle of Hastings[a] was fought on 14 October 1066 between the Norman-French army of William, the Duke of Normandy, and an English army under the Anglo-Saxon King Harold Godwinson, beginning the Norman conquest of England. It took place approximately 7 miles (11 kilometres) northwest of Hastings, close to the present-day town of Battle, East Sussex, and was a decisive Norman victory. | 
how many puppies can a dog give birth to | 
Canine reproduction The largest litter size to date was set by a Neapolitan Mastiff in Manea, Cambridgeshire, UK on November 29, 2004; the litter was 24 puppies.[22] | 
	
 
 
- Loss: 
CSRLoss with these parameters:{
    "beta": 0.1,
    "gamma": 3.0,
    "loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score')"
}
 
	
		
	
	
		Evaluation Dataset
	
	
		
	
	
		natural-questions
	
- Dataset: natural-questions at f9e894e
 
- Size: 1,000 evaluation samples
 
- Columns: 
query and answer 
- Approximate statistics based on the first 1000 samples:
	
		
 | 
query | 
answer | 
		
| type | 
string | 
string | 
| details | 
- min: 10 tokens
 - mean: 11.69 tokens
 - max: 23 tokens
 
  | 
- min: 15 tokens
 - mean: 134.01 tokens
 - max: 512 tokens
 
  | 
	
 
 
- Samples:
	
		
| query | 
answer | 
		
where is the tiber river located in italy | 
Tiber The Tiber (/ˈtaɪbər/, Latin: Tiberis,[1] Italian: Tevere [ˈteːvere])[2] is the third-longest river in Italy, rising in the Apennine Mountains in Emilia-Romagna and flowing 406 kilometres (252 mi) through Tuscany, Umbria and Lazio, where it is joined by the river Aniene, to the Tyrrhenian Sea, between Ostia and Fiumicino.[3] It drains a basin estimated at 17,375 square kilometres (6,709 sq mi). The river has achieved lasting fame as the main watercourse of the city of Rome, founded on its eastern banks. | 
what kind of car does jay gatsby drive | 
Jay Gatsby At the Buchanan home, Jordan Baker, Nick, Jay, and the Buchanans decide to visit New York City. Tom borrows Gatsby's yellow Rolls Royce to drive up to the city. On the way to New York City, Tom makes a detour at a gas station in "the Valley of Ashes", a run-down part of Long Island. The owner, George Wilson, shares his concern that his wife, Myrtle, may be having an affair. This unnerves Tom, who has been having an affair with Myrtle, and he leaves in a hurry. | 
who sings if i can dream about you | 
I Can Dream About You "I Can Dream About You" is a song performed by American singer Dan Hartman on the soundtrack album of the film Streets of Fire. Released in 1984 as a single from the soundtrack, and included on Hartman's album I Can Dream About You, it reached number 6 on the Billboard Hot 100.[1] | 
	
 
 
- Loss: 
CSRLoss with these parameters:{
    "beta": 0.1,
    "gamma": 3.0,
    "loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score')"
}
 
	
		
	
	
		Training Hyperparameters
	
	
		
	
	
		Non-Default Hyperparameters
	
eval_strategy: steps 
per_device_train_batch_size: 64 
per_device_eval_batch_size: 64 
learning_rate: 4e-05 
num_train_epochs: 1 
bf16: True 
load_best_model_at_end: True 
batch_sampler: no_duplicates 
	
		
	
	
		All Hyperparameters
	
Click to expand
overwrite_output_dir: False 
do_predict: False 
eval_strategy: steps 
prediction_loss_only: True 
per_device_train_batch_size: 64 
per_device_eval_batch_size: 64 
per_gpu_train_batch_size: None 
per_gpu_eval_batch_size: None 
gradient_accumulation_steps: 1 
eval_accumulation_steps: None 
torch_empty_cache_steps: None 
learning_rate: 4e-05 
weight_decay: 0.0 
adam_beta1: 0.9 
adam_beta2: 0.999 
adam_epsilon: 1e-08 
max_grad_norm: 1.0 
num_train_epochs: 1 
max_steps: -1 
lr_scheduler_type: linear 
lr_scheduler_kwargs: {} 
warmup_ratio: 0.0 
warmup_steps: 0 
log_level: passive 
log_level_replica: warning 
log_on_each_node: True 
logging_nan_inf_filter: True 
save_safetensors: True 
save_on_each_node: False 
save_only_model: False 
restore_callback_states_from_checkpoint: False 
no_cuda: False 
use_cpu: False 
use_mps_device: False 
seed: 42 
data_seed: None 
jit_mode_eval: False 
use_ipex: False 
bf16: True 
fp16: False 
fp16_opt_level: O1 
half_precision_backend: auto 
bf16_full_eval: False 
fp16_full_eval: False 
tf32: None 
local_rank: 0 
ddp_backend: None 
tpu_num_cores: None 
tpu_metrics_debug: False 
debug: [] 
dataloader_drop_last: False 
dataloader_num_workers: 0 
dataloader_prefetch_factor: None 
past_index: -1 
disable_tqdm: False 
remove_unused_columns: True 
label_names: None 
load_best_model_at_end: True 
ignore_data_skip: False 
fsdp: [] 
fsdp_min_num_params: 0 
fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} 
fsdp_transformer_layer_cls_to_wrap: None 
accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} 
deepspeed: None 
label_smoothing_factor: 0.0 
optim: adamw_torch 
optim_args: None 
adafactor: False 
group_by_length: False 
length_column_name: length 
ddp_find_unused_parameters: None 
ddp_bucket_cap_mb: None 
ddp_broadcast_buffers: False 
dataloader_pin_memory: True 
dataloader_persistent_workers: False 
skip_memory_metrics: True 
use_legacy_prediction_loop: False 
push_to_hub: False 
resume_from_checkpoint: None 
hub_model_id: None 
hub_strategy: every_save 
hub_private_repo: None 
hub_always_push: False 
gradient_checkpointing: False 
gradient_checkpointing_kwargs: None 
include_inputs_for_metrics: False 
include_for_metrics: [] 
eval_do_concat_batches: True 
fp16_backend: auto 
push_to_hub_model_id: None 
push_to_hub_organization: None 
mp_parameters:  
auto_find_batch_size: False 
full_determinism: False 
torchdynamo: None 
ray_scope: last 
ddp_timeout: 1800 
torch_compile: False 
torch_compile_backend: None 
torch_compile_mode: None 
include_tokens_per_second: False 
include_num_input_tokens_seen: False 
neftune_noise_alpha: None 
optim_target_modules: None 
batch_eval_metrics: False 
eval_on_start: False 
use_liger_kernel: False 
eval_use_gather_object: False 
average_tokens_across_devices: False 
prompts: None 
batch_sampler: no_duplicates 
multi_dataset_batch_sampler: proportional 
router_mapping: {} 
learning_rate_mapping: {} 
 
	
		
	
	
		Training Logs
	
	
		
| Epoch | 
Step | 
Training Loss | 
Validation Loss | 
NanoMSMARCO_8_dot_ndcg@10 | 
NanoBEIR_mean_8_dot_ndcg@10 | 
NanoMSMARCO_16_dot_ndcg@10 | 
NanoBEIR_mean_16_dot_ndcg@10 | 
NanoMSMARCO_32_dot_ndcg@10 | 
NanoBEIR_mean_32_dot_ndcg@10 | 
NanoMSMARCO_64_dot_ndcg@10 | 
NanoBEIR_mean_64_dot_ndcg@10 | 
NanoMSMARCO_128_dot_ndcg@10 | 
NanoBEIR_mean_128_dot_ndcg@10 | 
NanoMSMARCO_256_dot_ndcg@10 | 
NanoBEIR_mean_256_dot_ndcg@10 | 
NanoClimateFEVER_dot_ndcg@10 | 
NanoDBPedia_dot_ndcg@10 | 
NanoFEVER_dot_ndcg@10 | 
NanoFiQA2018_dot_ndcg@10 | 
NanoHotpotQA_dot_ndcg@10 | 
NanoMSMARCO_dot_ndcg@10 | 
NanoNFCorpus_dot_ndcg@10 | 
NanoNQ_dot_ndcg@10 | 
NanoQuoraRetrieval_dot_ndcg@10 | 
NanoSCIDOCS_dot_ndcg@10 | 
NanoArguAna_dot_ndcg@10 | 
NanoSciFact_dot_ndcg@10 | 
NanoTouche2020_dot_ndcg@10 | 
NanoBEIR_mean_dot_ndcg@10 | 
		
| -1 | 
-1 | 
- | 
- | 
0.2447 | 
0.2447 | 
0.3677 | 
0.3677 | 
0.5086 | 
0.5086 | 
0.5304 | 
0.5304 | 
0.6134 | 
0.6134 | 
0.5961 | 
0.5961 | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
| 0.0646 | 
100 | 
0.5048 | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
| 0.1293 | 
200 | 
0.5017 | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
| 0.1939 | 
300 | 
0.531 | 
0.6279 | 
0.2125 | 
0.2125 | 
0.4075 | 
0.4075 | 
0.4686 | 
0.4686 | 
0.5701 | 
0.5701 | 
0.6086 | 
0.6086 | 
0.5877 | 
0.5877 | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
| 0.2586 | 
400 | 
0.4992 | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
| 0.3232 | 
500 | 
0.5574 | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
| 0.3878 | 
600 | 
0.5821 | 
0.6178 | 
0.2312 | 
0.2312 | 
0.4248 | 
0.4248 | 
0.4239 | 
0.4239 | 
0.5142 | 
0.5142 | 
0.6034 | 
0.6034 | 
0.6177 | 
0.6177 | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
| 0.4525 | 
700 | 
0.5632 | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
| 0.5171 | 
800 | 
0.5786 | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
| 0.5818 | 
900 | 
0.5329 | 
0.5743 | 
0.2662 | 
0.2662 | 
0.4468 | 
0.4468 | 
0.4976 | 
0.4976 | 
0.5630 | 
0.5630 | 
0.6279 | 
0.6279 | 
0.6240 | 
0.6240 | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
| 0.6464 | 
1000 | 
0.5409 | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
| 0.7111 | 
1100 | 
0.4995 | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
| 0.7757 | 
1200 | 
0.5269 | 
0.5169 | 
0.2838 | 
0.2838 | 
0.3874 | 
0.3874 | 
0.4738 | 
0.4738 | 
0.5892 | 
0.5892 | 
0.5798 | 
0.5798 | 
0.5962 | 
0.5962 | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
| 0.8403 | 
1300 | 
0.5553 | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
| 0.9050 | 
1400 | 
0.45 | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
| 0.9696 | 
1500 | 
0.4551 | 
0.5188 | 
0.2553 | 
0.2553 | 
0.3971 | 
0.3971 | 
0.4873 | 
0.4873 | 
0.5911 | 
0.5911 | 
0.5877 | 
0.5877 | 
0.6247 | 
0.6247 | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
| -1 | 
-1 | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
- | 
0.3566 | 
0.6072 | 
0.9081 | 
0.5253 | 
0.7911 | 
0.6248 | 
0.3345 | 
0.6480 | 
0.9494 | 
0.4266 | 
0.6675 | 
0.7776 | 
0.4780 | 
0.6227 | 
	
 
- The bold row denotes the saved checkpoint.
 
	
		
	
	
		Environmental Impact
	
Carbon emissions were measured using CodeCarbon.
- Energy Consumed: 0.122 kWh
 
- Carbon Emitted: 0.047 kg of CO2
 
- Hours Used: 0.373 hours
 
	
		
	
	
		Training Hardware
	
- On Cloud: No
 
- GPU Model: 1 x NVIDIA GeForce RTX 3090
 
- CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K
 
- RAM Size: 31.78 GB
 
	
		
	
	
		Framework Versions
	
- Python: 3.11.6
 
- Sentence Transformers: 4.2.0.dev0
 
- Transformers: 4.52.4
 
- PyTorch: 2.6.0+cu124
 
- Accelerate: 1.5.1
 
- Datasets: 2.21.0
 
- Tokenizers: 0.21.1
 
	
		
	
	
		Citation
	
	
		
	
	
		BibTeX
	
	
		
	
	
		Sentence Transformers
	
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
	
		
	
	
		CSRLoss
	
@misc{wen2025matryoshkarevisitingsparsecoding,
      title={Beyond Matryoshka: Revisiting Sparse Coding for Adaptive Representation},
      author={Tiansheng Wen and Yifei Wang and Zequn Zeng and Zhong Peng and Yudi Su and Xinyang Liu and Bo Chen and Hongwei Liu and Stefanie Jegelka and Chenyu You},
      year={2025},
      eprint={2503.01776},
      archivePrefix={arXiv},
      primaryClass={cs.LG},
      url={https://arxiv.org/abs/2503.01776},
}
	
		
	
	
		SparseMultipleNegativesRankingLoss
	
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}