tomaarsen's picture
tomaarsen HF Staff
Update README.md
f97f3a4 verified
metadata
language:
  - en
license: apache-2.0
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - dense
  - generated_from_trainer
  - dataset_size:3002496
  - loss:MatryoshkaLoss
  - loss:MultipleNegativesRankingLoss
widget:
  - source_sentence: how to sign legal documents as power of attorney?
    sentences:
      - >-
        After the principal's name, write “by” and then sign your own name.
        Under or after the signature line, indicate your status as POA by
        including any of the following identifiers: as POA, as Agent, as
        Attorney in Fact or as Power of Attorney.
      - >-
        ['From the Home screen, swipe left to Apps.', 'Tap Transfer my Data.',
        'Tap Menu (...).', 'Tap Export to SD card.']
      - >-
        Ginger Dank Nugs (Grape) - 350mg. Feast your eyes on these unique and
        striking gourmet chocolates; Coco Nugs created by Ginger Dank. Crafted
        to resemble perfect nugs of cannabis, each of the 10 buds contains 35mg
        of THC. ... This is a perfect product for both cannabis and chocolate
        lovers, who appreciate a little twist.
  - source_sentence: how to delete vdom in fortigate?
    sentences:
      - >-
        Go to System -> VDOM -> VDOM2 and select 'Delete'. This VDOM is now
        successfully removed from the configuration.
      - >-
        Both combination birth control pills and progestin-only pills may cause
        headaches as a side effect. Additional side effects of birth control
        pills may include: breast tenderness. nausea.
      - >-
        White cheese tends to show imperfections more readily and as consumers
        got more used to yellow-orange cheese, it became an expected option.
        Today, many cheddars are yellow. While most cheesemakers use annatto,
        some use an artificial coloring agent instead, according to Sachs.
  - source_sentence: where are earthquakes most likely to occur on earth?
    sentences:
      - >-
        Zelle in the Bank of the America app is a fast, safe, and easy way to
        send and receive money with family and friends who have a bank account
        in the U.S., all with no fees. Money moves in minutes directly between
        accounts that are already enrolled with Zelle.
      - >-
        It takes about 3 days for a spacecraft to reach the Moon. During that
        time a spacecraft travels at least 240,000 miles (386,400 kilometers)
        which is the distance between Earth and the Moon.
      - >-
        Most earthquakes occur along the edge of the oceanic and continental
        plates. The earth's crust (the outer layer of the planet) is made up of
        several pieces, called plates. The plates under the oceans are called
        oceanic plates and the rest are continental plates.
  - source_sentence: fix iphone is disabled connect to itunes without itunes?
    sentences:
      - >-
        To fix a disabled iPhone or iPad without iTunes, you have to erase your
        device. Click on the "Erase iPhone" option and confirm your selection.
        Wait for a while as the "Find My iPhone" feature will remotely erase
        your iOS device. Needless to say, it will also disable its lock.
      - >-
        How Māui brought fire to the world. One evening, after eating a hearty
        meal, Māui lay beside his fire staring into the flames. ... In the
        middle of the night, while everyone was sleeping, Māui went from village
        to village and extinguished all the fires until not a single fire burned
        in the world.
      - >-
        Angry Orchard makes a variety of year-round craft cider styles,
        including Angry Orchard Crisp Apple, a fruit-forward hard cider that
        balances the sweetness of culinary apples with dryness and bright
        acidity of bittersweet apples for a complex, refreshing taste.
  - source_sentence: how to reverse a video on tiktok that's not yours?
    sentences:
      - >-
        ['Tap "Effects" at the bottom of your screen — it\'s an icon that looks
        like a clock. Open the Effects menu. ... ', 'At the end of the new list
        that appears, tap "Time." Select "Time" at the end. ... ', 'Select
        "Reverse" — you\'ll then see a preview of your new, reversed video
        appear on the screen.']
      - >-
        Franchise Facts Poke Bar has a franchise fee of up to $30,000, with a
        total initial investment range of $157,800 to $438,000. The initial cost
        of a franchise includes several fees -- Unlock this franchise to better
        understand the costs such as training and territory fees.
      - >-
        Relative age is the age of a rock layer (or the fossils it contains)
        compared to other layers. It can be determined by looking at the
        position of rock layers. Absolute age is the numeric age of a layer of
        rocks or fossils. Absolute age can be determined by using radiometric
        dating.
datasets:
  - sentence-transformers/gooaq
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
  - cosine_accuracy@1
  - cosine_accuracy@3
  - cosine_accuracy@5
  - cosine_accuracy@10
  - cosine_precision@1
  - cosine_precision@3
  - cosine_precision@5
  - cosine_precision@10
  - cosine_recall@1
  - cosine_recall@3
  - cosine_recall@5
  - cosine_recall@10
  - cosine_ndcg@10
  - cosine_mrr@10
  - cosine_map@100
co2_eq_emissions:
  emissions: 7.447488216858034
  energy_consumed: 0.019159891682723612
  source: codecarbon
  training_type: fine-tuning
  on_cloud: false
  cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
  ram_total_size: 31.777088165283203
  hours_used: 0.124
  hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
  - name: >-
      Static Embeddings with BEE-spoke-data/wordpiece-tokenizer-32k-en_code-msp
      tokenizer finetuned on GooAQ pairs
    results:
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: gooaq 1024 dev
          type: gooaq-1024-dev
        metrics:
          - type: cosine_accuracy@1
            value: 0.6335
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.8394
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8979
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.9454
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.6335
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.27979999999999994
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.17958000000000002
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09454000000000003
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.6335
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.8394
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8979
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.9454
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7948890776997601
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7459194047618989
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.7484214498572738
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: gooaq 512 dev
          type: gooaq-512-dev
        metrics:
          - type: cosine_accuracy@1
            value: 0.6285
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.8339
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8943
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.9425
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.6285
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.2779666666666666
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.17886000000000002
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09425000000000003
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.6285
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.8339
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8943
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.9425
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7907464684784297
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7413761111111041
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.7439975831469758
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: gooaq 256 dev
          type: gooaq-256-dev
        metrics:
          - type: cosine_accuracy@1
            value: 0.6196
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.8262
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.888
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.9375
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.6196
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.2754
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.17760000000000004
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09375000000000001
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.6196
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.8262
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.888
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.9375
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7830118342115728
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.73284916666666
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.7356198073355731
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: gooaq 128 dev
          type: gooaq-128-dev
        metrics:
          - type: cosine_accuracy@1
            value: 0.597
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.8033
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8681
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.9247
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.597
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.26776666666666665
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.17361999999999997
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09247000000000001
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.597
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.8033
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8681
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.9247
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7633008182074578
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7111824206349133
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.714297170282837
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: gooaq 64 dev
          type: gooaq-64-dev
        metrics:
          - type: cosine_accuracy@1
            value: 0.5541
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.7568
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8287
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.896
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.5541
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.25226666666666664
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.16574
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.08960000000000001
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.5541
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.7568
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8287
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.896
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7246476170472534
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.6696768650793602
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.6735610073887002
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: gooaq 32 dev
          type: gooaq-32-dev
        metrics:
          - type: cosine_accuracy@1
            value: 0.4602
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.6631
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.7372
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.8226
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.4602
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.22103333333333336
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.14744000000000002
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.08225999999999999
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.4602
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.6631
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.7372
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.8226
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.6372411594771165
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.5783468650793636
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.5841294309265819
            name: Cosine Map@100

Static Embeddings with BEE-spoke-data/wordpiece-tokenizer-32k-en_code-msp tokenizer finetuned on GooAQ pairs

This is a sentence-transformers model trained on the gooaq dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

See train_script.py for the training script used to train this model.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Maximum Sequence Length: inf tokens
  • Output Dimensionality: 1024 dimensions
  • Similarity Function: Cosine Similarity
  • Training Dataset:
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): StaticEmbedding(
    (embedding): EmbeddingBag(31999, 1024, mode='mean')
  )
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("tomaarsen/static-BEE-spoke-data-tokenizer-v2-gooaq")
# Run inference
sentences = [
    "how to reverse a video on tiktok that's not yours?",
    '[\'Tap "Effects" at the bottom of your screen — it\\\'s an icon that looks like a clock. Open the Effects menu. ... \', \'At the end of the new list that appears, tap "Time." Select "Time" at the end. ... \', \'Select "Reverse" — you\\\'ll then see a preview of your new, reversed video appear on the screen.\']',
    'Relative age is the age of a rock layer (or the fossils it contains) compared to other layers. It can be determined by looking at the position of rock layers. Absolute age is the numeric age of a layer of rocks or fossils. Absolute age can be determined by using radiometric dating.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.6335
cosine_accuracy@3 0.8394
cosine_accuracy@5 0.8979
cosine_accuracy@10 0.9454
cosine_precision@1 0.6335
cosine_precision@3 0.2798
cosine_precision@5 0.1796
cosine_precision@10 0.0945
cosine_recall@1 0.6335
cosine_recall@3 0.8394
cosine_recall@5 0.8979
cosine_recall@10 0.9454
cosine_ndcg@10 0.7949
cosine_mrr@10 0.7459
cosine_map@100 0.7484

Information Retrieval

Metric Value
cosine_accuracy@1 0.6285
cosine_accuracy@3 0.8339
cosine_accuracy@5 0.8943
cosine_accuracy@10 0.9425
cosine_precision@1 0.6285
cosine_precision@3 0.278
cosine_precision@5 0.1789
cosine_precision@10 0.0943
cosine_recall@1 0.6285
cosine_recall@3 0.8339
cosine_recall@5 0.8943
cosine_recall@10 0.9425
cosine_ndcg@10 0.7907
cosine_mrr@10 0.7414
cosine_map@100 0.744

Information Retrieval

Metric Value
cosine_accuracy@1 0.6196
cosine_accuracy@3 0.8262
cosine_accuracy@5 0.888
cosine_accuracy@10 0.9375
cosine_precision@1 0.6196
cosine_precision@3 0.2754
cosine_precision@5 0.1776
cosine_precision@10 0.0938
cosine_recall@1 0.6196
cosine_recall@3 0.8262
cosine_recall@5 0.888
cosine_recall@10 0.9375
cosine_ndcg@10 0.783
cosine_mrr@10 0.7328
cosine_map@100 0.7356

Information Retrieval

Metric Value
cosine_accuracy@1 0.597
cosine_accuracy@3 0.8033
cosine_accuracy@5 0.8681
cosine_accuracy@10 0.9247
cosine_precision@1 0.597
cosine_precision@3 0.2678
cosine_precision@5 0.1736
cosine_precision@10 0.0925
cosine_recall@1 0.597
cosine_recall@3 0.8033
cosine_recall@5 0.8681
cosine_recall@10 0.9247
cosine_ndcg@10 0.7633
cosine_mrr@10 0.7112
cosine_map@100 0.7143

Information Retrieval

Metric Value
cosine_accuracy@1 0.5541
cosine_accuracy@3 0.7568
cosine_accuracy@5 0.8287
cosine_accuracy@10 0.896
cosine_precision@1 0.5541
cosine_precision@3 0.2523
cosine_precision@5 0.1657
cosine_precision@10 0.0896
cosine_recall@1 0.5541
cosine_recall@3 0.7568
cosine_recall@5 0.8287
cosine_recall@10 0.896
cosine_ndcg@10 0.7246
cosine_mrr@10 0.6697
cosine_map@100 0.6736

Information Retrieval

Metric Value
cosine_accuracy@1 0.4602
cosine_accuracy@3 0.6631
cosine_accuracy@5 0.7372
cosine_accuracy@10 0.8226
cosine_precision@1 0.4602
cosine_precision@3 0.221
cosine_precision@5 0.1474
cosine_precision@10 0.0823
cosine_recall@1 0.4602
cosine_recall@3 0.6631
cosine_recall@5 0.7372
cosine_recall@10 0.8226
cosine_ndcg@10 0.6372
cosine_mrr@10 0.5783
cosine_map@100 0.5841

Training Details

Training Dataset

gooaq

  • Dataset: gooaq at b089f72
  • Size: 3,002,496 training samples
  • Columns: question and answer
  • Approximate statistics based on the first 1000 samples:
    question answer
    type string string
    details
    • min: 18 characters
    • mean: 43.23 characters
    • max: 96 characters
    • min: 55 characters
    • mean: 253.36 characters
    • max: 371 characters
  • Samples:
    question answer
    what is the difference between broilers and layers? An egg laying poultry is called egger or layer whereas broilers are reared for obtaining meat. So a layer should be able to produce more number of large sized eggs, without growing too much. On the other hand, a broiler should yield more meat and hence should be able to grow well.
    what is the difference between chronological order and spatial order? As a writer, you should always remember that unlike chronological order and the other organizational methods for data, spatial order does not take into account the time. Spatial order is primarily focused on the location. All it does is take into account the location of objects and not the time.
    is kamagra same as viagra? Kamagra is thought to contain the same active ingredient as Viagra, sildenafil citrate. In theory, it should work in much the same way as Viagra, taking about 45 minutes to take effect, and lasting for around 4-6 hours. However, this will vary from person to person.
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            1024,
            512,
            256,
            128,
            64,
            32
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Evaluation Dataset

gooaq

  • Dataset: gooaq at b089f72
  • Size: 10,000 evaluation samples
  • Columns: question and answer
  • Approximate statistics based on the first 1000 samples:
    question answer
    type string string
    details
    • min: 18 characters
    • mean: 43.17 characters
    • max: 98 characters
    • min: 51 characters
    • mean: 254.12 characters
    • max: 360 characters
  • Samples:
    question answer
    how do i program my directv remote with my tv? ['Press MENU on your remote.', 'Select Settings & Help > Settings > Remote Control > Program Remote.', 'Choose the device (TV, audio, DVD) you wish to program. ... ', 'Follow the on-screen prompts to complete programming.']
    are rodrigues fruit bats nocturnal? Before its numbers were threatened by habitat destruction, storms, and hunting, some of those groups could number 500 or more members. Sunrise, sunset. Rodrigues fruit bats are most active at dawn, at dusk, and at night.
    why does your heart rate increase during exercise bbc bitesize? During exercise there is an increase in physical activity and muscle cells respire more than they do when the body is at rest. The heart rate increases during exercise. The rate and depth of breathing increases - this makes sure that more oxygen is absorbed into the blood, and more carbon dioxide is removed from it.
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            1024,
            512,
            256,
            128,
            64,
            32
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 2048
  • per_device_eval_batch_size: 2048
  • learning_rate: 0.2
  • num_train_epochs: 1
  • warmup_ratio: 0.1
  • bf16: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 2048
  • per_device_eval_batch_size: 2048
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 0.2
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss Validation Loss gooaq-1024-dev_cosine_ndcg@10 gooaq-512-dev_cosine_ndcg@10 gooaq-256-dev_cosine_ndcg@10 gooaq-128-dev_cosine_ndcg@10 gooaq-64-dev_cosine_ndcg@10 gooaq-32-dev_cosine_ndcg@10
-1 -1 - - 0.2340 0.2217 0.1954 0.1493 0.0863 0.0339
0.0007 1 35.6378 - - - - - - -
0.0682 100 16.3559 - - - - - - -
0.1363 200 6.0576 - - - - - - -
0.1704 250 - 1.6966 0.7315 0.7266 0.7170 0.6895 0.6443 0.5363
0.2045 300 4.9232 - - - - - - -
0.2727 400 4.4397 - - - - - - -
0.3408 500 4.1373 1.4008 0.7613 0.7561 0.7459 0.7253 0.6838 0.5866
0.4090 600 3.8967 - - - - - - -
0.4772 700 3.732 - - - - - - -
0.5112 750 - 1.2860 0.7749 0.7708 0.7630 0.7413 0.7017 0.6096
0.5453 800 3.6054 - - - - - - -
0.6135 900 3.4792 - - - - - - -
0.6817 1000 3.4143 1.1877 0.7847 0.7806 0.7729 0.7524 0.7119 0.6212
0.7498 1100 3.3194 - - - - - - -
0.8180 1200 3.2469 - - - - - - -
0.8521 1250 - 1.1253 0.7928 0.7888 0.7805 0.7612 0.7221 0.6337
0.8862 1300 3.2015 - - - - - - -
0.9543 1400 3.1689 - - - - - - -
-1 -1 - - 0.7949 0.7907 0.7830 0.7633 0.7246 0.6372

Environmental Impact

Carbon emissions were measured using CodeCarbon.

  • Energy Consumed: 0.019 kWh
  • Carbon Emitted: 0.007 kg of CO2
  • Hours Used: 0.124 hours

Training Hardware

  • On Cloud: No
  • GPU Model: 1 x NVIDIA GeForce RTX 3090
  • CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K
  • RAM Size: 31.78 GB

Framework Versions

  • Python: 3.11.6
  • Sentence Transformers: 4.2.0.dev0
  • Transformers: 4.49.0
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.5.1
  • Datasets: 2.21.0
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}