Configuration Parsing Warning: In adapter_config.json: "peft.task_type" must be a string

BinGE: TODO

TODO: 2 line summary and link to paper

Usage

import torch
from transformers import AutoTokenizer, AutoModel, AutoConfig
from peft import PeftModel


if __name__ == "__main__":
    # Loading base Meta-Llama-3 model, along with custom code that enables bidirectional connections in decoder-only LLMs.
    tokenizer = AutoTokenizer.from_pretrained(
        "McGill-NLP/LLM2Vec-Meta-Llama-3-8B-Instruct-mntp"
    )
    config = AutoConfig.from_pretrained(
        "McGill-NLP/LLM2Vec-Meta-Llama-3-8B-Instruct-mntp", trust_remote_code=True
    )
    model = AutoModel.from_pretrained(
        "McGill-NLP/LLM2Vec-Meta-Llama-3-8B-Instruct-mntp",
        trust_remote_code=True,
        config=config,
        torch_dtype=torch.bfloat16,
        device_map="cuda" if torch.cuda.is_available() else "cpu",
    )

    # Loading MNTP (Masked Next Token Prediction) model.
    model = PeftModel.from_pretrained(
        model,
        "McGill-NLP/LLM2Vec-Meta-Llama-3-8B-Instruct-mntp",
    )

    model = model.merge_and_unload()  # This can take several minutes on cpu

    # Loading BinGSE model. This loads the trained LoRA weights on top of MNTP model. Hence the final weights are -- Base model + MNTP (LoRA) + BinGSE (LoRA).
    model = PeftModel.from_pretrained(
        model, model_path 
    )

TODO: initialize wrapper, provide example to check loading happened properly - see https://huggingface.co/McGill-NLP/LLM2Vec-Meta-Llama-3-8B-Instruct-mntp-unsup-simcse

Downloads last month
11
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The HF Inference API does not support sentence-similarity models for peft library.

Collection including tsirif/BinGSE-Meta-Llama-3-8B-Instruct

Evaluation results