Examples

turhancan97/yolov5-detect-trash-classification
turhancan97/yolov5-detect-trash-classification
turhancan97/yolov5-detect-trash-classification

How to use

pip install -U yolov5
  • Load model and perform prediction:
import yolov5

# load model
model = yolov5.load('turhancan97/yolov5-detect-trash-classification')
  
# set model parameters
model.conf = 0.25  # NMS confidence threshold
model.iou = 0.45  # NMS IoU threshold
model.agnostic = False  # NMS class-agnostic
model.multi_label = False  # NMS multiple labels per box
model.max_det = 1000  # maximum number of detections per image

# set image
img = 'https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg'

# perform inference
results = model(img, size=416)

# inference with test time augmentation
results = model(img, augment=True)

# parse results
predictions = results.pred[0]
boxes = predictions[:, :4] # x1, y1, x2, y2
scores = predictions[:, 4]
categories = predictions[:, 5]

# show detection bounding boxes on image
results.show()

# save results into "results/" folder
results.save(save_dir='results/')
  • Finetune the model on your custom dataset:
yolov5 train --data data.yaml --img 416 --batch 16 --weights turhancan97/yolov5-detect-trash-classification --epochs 10
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.

Datasets used to train turhancan97/yolov5-detect-trash-classification

Space using turhancan97/yolov5-detect-trash-classification 1