tyzhu's picture
End of training
22bc438 verified
metadata
license: llama2
base_model: meta-llama/Llama-2-7b-hf
tags:
  - generated_from_trainer
datasets:
  - tyzhu/lmind_hotpot_train8000_eval7405_v1_docidx
metrics:
  - accuracy
model-index:
  - name: lmind_hotpot_train8000_eval7405_v1_docidx_meta-llama_Llama-2-7b-hf_lora2
    results:
      - task:
          name: Causal Language Modeling
          type: text-generation
        dataset:
          name: tyzhu/lmind_hotpot_train8000_eval7405_v1_docidx
          type: tyzhu/lmind_hotpot_train8000_eval7405_v1_docidx
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7928508287292818

lmind_hotpot_train8000_eval7405_v1_docidx_meta-llama_Llama-2-7b-hf_lora2

This model is a fine-tuned version of meta-llama/Llama-2-7b-hf on the tyzhu/lmind_hotpot_train8000_eval7405_v1_docidx dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7676
  • Accuracy: 0.7929

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • total_eval_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 10.0

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.108 1.0 839 1.3252 0.7537
1.0489 2.0 1678 1.2690 0.7580
0.9812 3.0 2517 1.1602 0.7631
0.902 4.0 3357 1.0981 0.7679
0.8047 5.0 4196 1.0106 0.7727
0.7028 6.0 5035 0.9448 0.7777
0.6141 7.0 5874 0.8789 0.7818
0.5393 8.0 6714 0.8737 0.7859
0.4595 9.0 7553 0.8019 0.7896
0.3927 10.0 8390 0.7676 0.7929

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.1.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.14.1