File size: 10,374 Bytes
717bb83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
"""

PULSE-7B Enhanced Handler

Ubden® Team - Edited by https://github.com/ck-cankurt

Support: Text, Image URLs, and Base64 encoded images

"""

import torch
from typing import Dict, List, Any
import base64
from io import BytesIO
from PIL import Image
import requests


class EndpointHandler:
    def __init__(self, path=""):
        """

        Hey there! Let's get this PULSE-7B model up and running.

        We'll load it from the HuggingFace hub directly, so no worries about local files.

        

        Args:

            path: Model directory path (we actually ignore this and load from HF hub)

        """
        print("🚀 Starting up PULSE-7B handler...")
        print("📝 Enhanced by Ubden® Team - github.com/ck-cankurt")
        
        # Let's see what hardware we're working with
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        print(f"🖥️ Running on: {self.device}")
        
        try:
            # First attempt - using pipeline (easiest and most stable way)
            from transformers import pipeline
            
            print("📦 Fetching model from HuggingFace Hub...")
            self.pipe = pipeline(
                "text-generation",
                model="PULSE-ECG/PULSE-7B",
                torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
                device=0 if torch.cuda.is_available() else -1,
                trust_remote_code=True,
                model_kwargs={
                    "low_cpu_mem_usage": True,
                    "use_safetensors": True
                }
            )
            print("✅ Model loaded successfully via pipeline!")
            
        except Exception as e:
            print(f"⚠️ Pipeline didn't work out: {e}")
            print("🔄 Let me try a different approach...")
            
            try:
                # Plan B - load model and tokenizer separately
                from transformers import AutoTokenizer, LlamaForCausalLM
                
                # Get the tokenizer ready
                print("📖 Setting up tokenizer...")
                self.tokenizer = AutoTokenizer.from_pretrained(
                    "PULSE-ECG/PULSE-7B",
                    trust_remote_code=True
                )
                
                # Load the model as Llama (it works, trust me!)
                print("🧠 Loading the model as Llama...")
                self.model = LlamaForCausalLM.from_pretrained(
                    "PULSE-ECG/PULSE-7B",
                    torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
                    device_map="auto",
                    low_cpu_mem_usage=True,
                    trust_remote_code=True
                )
                
                # Quick fix for padding token if it's missing
                if self.tokenizer.pad_token is None:
                    self.tokenizer.pad_token = self.tokenizer.eos_token
                    self.tokenizer.pad_token_id = self.tokenizer.eos_token_id
                
                self.model.eval()
                self.use_pipeline = False
                print("✅ Model loaded successfully via direct loading!")
                
            except Exception as e2:
                print(f"😓 That didn't work either: {e2}")
                # If all else fails, we'll handle it gracefully
                self.pipe = None
                self.model = None
                self.tokenizer = None
                self.use_pipeline = None
        else:
            self.use_pipeline = True

    def process_image_input(self, image_input):
        """

        Handle both URL and base64 image inputs like a champ!

        

        Args:

            image_input: Can be a URL string or base64 encoded image

            

        Returns:

            PIL Image object or None if something goes wrong

        """
        try:
            # Check if it's a URL (starts with http/https)
            if isinstance(image_input, str) and (image_input.startswith('http://') or image_input.startswith('https://')):
                print(f"🌐 Fetching image from URL: {image_input[:50]}...")
                response = requests.get(image_input, timeout=10)
                response.raise_for_status()
                image = Image.open(BytesIO(response.content)).convert('RGB')
                print("✅ Image downloaded successfully!")
                return image
            
            # Must be base64 then
            elif isinstance(image_input, str):
                print("🔍 Decoding base64 image...")
                # Remove the data URL prefix if it exists
                if "base64," in image_input:
                    image_input = image_input.split("base64,")[1]
                
                image_data = base64.b64decode(image_input)
                image = Image.open(BytesIO(image_data)).convert('RGB')
                print("✅ Image decoded successfully!")
                return image
                
        except Exception as e:
            print(f"❌ Couldn't process the image: {e}")
            return None
        
        return None

    def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
        """

        Main processing function - where the magic happens!

        

        Args:

            data: Input data with 'inputs' and optional 'parameters'

        

        Returns:

            List with the generated response

        """
        # Quick check - is our model ready?
        if self.use_pipeline is None:
            return [{
                "generated_text": "Oops! Model couldn't load properly. Please check the deployment settings.",
                "error": "Model initialization failed",
                "handler": "Ubden® Team Enhanced Handler"
            }]
        
        try:
            # Parse the inputs - flexible format support
            inputs = data.get("inputs", "")
            text = ""
            image = None
            
            if isinstance(inputs, dict):
                # Dictionary input - check for text and image
                text = inputs.get("text", inputs.get("prompt", str(inputs)))
                
                # Check for image in various formats
                image_input = inputs.get("image", inputs.get("image_url", inputs.get("image_base64", None)))
                if image_input:
                    image = self.process_image_input(image_input)
                    if image:
                        # For now, we'll add a note about the image since we're text-only
                        text = f"[Image provided - {image.size[0]}x{image.size[1]} pixels] {text}"
            else:
                # Simple string input
                text = str(inputs)
            
            if not text:
                return [{"generated_text": "Hey, I need some text to work with! Please provide an input."}]
            
            # Get generation parameters with sensible defaults
            parameters = data.get("parameters", {})
            max_new_tokens = min(parameters.get("max_new_tokens", 256), 1024)
            temperature = parameters.get("temperature", 0.7)
            top_p = parameters.get("top_p", 0.95)
            do_sample = parameters.get("do_sample", True)
            repetition_penalty = parameters.get("repetition_penalty", 1.0)
            
            # Using pipeline? Let's go!
            if self.use_pipeline:
                result = self.pipe(
                    text,
                    max_new_tokens=max_new_tokens,
                    temperature=temperature,
                    top_p=top_p,
                    do_sample=do_sample,
                    repetition_penalty=repetition_penalty,
                    return_full_text=False  # Just the new stuff, not the input
                )
                
                # Pipeline returns a list, let's handle it
                if isinstance(result, list) and len(result) > 0:
                    return [{"generated_text": result[0].get("generated_text", "")}]
                else:
                    return [{"generated_text": str(result)}]
            
            # Manual generation mode
            else:
                # Tokenize the input
                encoded = self.tokenizer(
                    text,
                    return_tensors="pt",
                    truncation=True,
                    max_length=2048
                )
                
                input_ids = encoded["input_ids"].to(self.device)
                attention_mask = encoded.get("attention_mask")
                if attention_mask is not None:
                    attention_mask = attention_mask.to(self.device)
                
                # Generate the response
                with torch.no_grad():
                    outputs = self.model.generate(
                        input_ids,
                        attention_mask=attention_mask,
                        max_new_tokens=max_new_tokens,
                        temperature=temperature,
                        top_p=top_p,
                        do_sample=do_sample,
                        repetition_penalty=repetition_penalty,
                        pad_token_id=self.tokenizer.pad_token_id,
                        eos_token_id=self.tokenizer.eos_token_id
                    )
                
                # Decode only the new tokens (not the input)
                generated_ids = outputs[0][input_ids.shape[-1]:]
                generated_text = self.tokenizer.decode(
                    generated_ids,
                    skip_special_tokens=True,
                    clean_up_tokenization_spaces=True
                )
                
                return [{"generated_text": generated_text}]
            
        except Exception as e:
            error_msg = f"Something went wrong during generation: {str(e)}"
            print(f"❌ {error_msg}")
            return [{
                "generated_text": "",
                "error": error_msg,
                "handler": "Ubden® Team Enhanced Handler"
            }]