This is my experiment with training a reasoning model using TRL's GRPO and Unsloth API.
Inference:
Using Unsloth API (For Faster Inference):
import torch
from unsloth import FastLanguageModel
from transformers import TextStreamer
model, tokenizer = FastLanguageModel.from_pretrained(
model_name = "ubermenchh/Qwen2.5-3B-openr1-math",
max_seq_length = 1024,
dtype = torch.bfloat16,
load_in_4bit = True,
)
FastLanguageModel.for_inference(model)
SYSTEM_PROMPT = """
Respond in the following format:
<think>
...
</think>
<answer>
...
</answer>
"""
test_question = """
Let $z \in \mathbf{C}$, satisfying the condition $a z^{n}+b \mathrm{i} z^{n-1}+b \mathrm{i} z-a=0, a, b \in \mathbf{R}, m \in$ $\mathbf{N}$, find $|z|$.
"""
messages = [
{"role": "system", "content": SYSTEM_PROMPT},
{"role": "user", "content": test_question},
]
input_ids = tokenizer.apply_chat_template(
messages,
add_generation_prompt = True,
return_tensors = "pt",
).to("cuda")
text_streamer = TextStreamer(tokenizer, skip_prompt = True)
_ = model.generate(input_ids, streamer = text_streamer, max_new_tokens = 2048, pad_token_id = tokenizer.eos_token_id)
Using Transformers API:
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
model = AutoModelForCausalLM.from_pretrained(
"ubermenchh/Qwen2.5-3B-openr1-math",
torch_dtype=torch.bfloat16,
device_map="auto",
trust_remote_code=True
)
tokenizer = AutoTokenizer.from_pretrained(
"ubermenchh/Qwen2.5-3B-openr1-math",
trust_remote_code=True
)
SYSTEM_PROMPT = """
Respond in the following format:
<think>
...
</think>
<answer>
...
</answer>
"""
problem = "Let $z \in \mathbf{C}$, satisfying the condition $a z^{n}+b \mathrm{i} z^{n-1}+b \mathrm{i} z-a=0, a, b \in \mathbf{R}, m \in$ $\mathbf{N}$, find $|z|$."
prompt = [
{"role": "system", "content": SYSTEM_PROMPT},
{"role": "user", "content": problem}
]
input_text = tokenizer.apply_chat_template(prompt, tokenize=False, add_generation_prompt=True)
inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
outputs = model.generate(
**inputs,
max_new_tokens=3000,
temperature=1.3,
num_return_sequences=1,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print("Question:\n", problem)
print("\n\nResponse:\n", response)
References:
- https://github.com/HarleyCoops/smolThinker-.5B
- https://gist.github.com/willccbb/4676755236bb08cab5f4e54a0475d6fb
- https://github.com/huggingface/open-r1
Uploaded model
- Developed by: ubermenchh
- License: apache-2.0
- Finetuned from model : unsloth/qwen2.5-3b-instruct-unsloth-bnb-4bit
This qwen2 model was trained 2x faster with Unsloth and Huggingface's TRL library.
- Downloads last month
- 2
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.