Zerpal-mBERT-tokenizer

How to use

You can use this model directly with a pipeline for masked language modeling:

from transformers import pipeline

unmasker = pipeline('fill-mask', model='udmurtNLP/zerpal-mbert', tokenizer='udmurtNLP/zerpal-mbert-tokenizer')

unmasker("Ӟечбур! Мынам нимы [MASK].")

Here is how to use this model to get the features of a given text in PyTorch:

from transformers import BertTokenizer, BertModel
tokenizer = BertTokenizer.from_pretrained('udmurtNLP/zerpal-mbert-tokenizer')
model = BertModel.from_pretrained("udmurtNLP/zerpal-mbert")
text = "Яратон, яратон, мар меда сыӵе тон?"
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Collection including udmurtNLP/zerpal-mbert-tokenizer