GPT-OSS-20B BigCodeBench LoRA Adapter

LoRA adapter weights fine-tuned from openai/gpt-oss-20b on BigCodeBench split v0.1.4 (~1.1K samples).

Training Summary

  • Steps: 100
  • Final train_loss: 0.7833267974853516
  • Runtime (s): 3717.3139
  • Samples/sec: 0.43
  • Total FLOPs: 6.825417425085542e+16

Usage

from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel
base = 'openai/gpt-oss-20b'
adapter = 'unlimitedbytes/gptoss-bigcodebench-20b-lora'
model = AutoModelForCausalLM.from_pretrained(base, device_map='auto', torch_dtype='auto')
model = PeftModel.from_pretrained(model, adapter)
tokenizer = AutoTokenizer.from_pretrained(base)
messages = [
    {'role': 'system', 'content': 'You are a helpful coding assistant.'},
    {'role': 'user', 'content': 'Write a Python function to add two numbers.'}
]
input_ids = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors='pt').to(model.device)
out = model.generate(input_ids, max_new_tokens=128)
print(tokenizer.decode(out[0], skip_special_tokens=False))

Merge adapter:

model = model.merge_and_unload()
model.save_pretrained('merged-model')

Limitations

  • 100 training steps only; not fully converged.
  • Adapter only, no merged full weights.
  • Outputs may include control tokens.

License

Apache-2.0 (base) + dataset licenses.

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for unlimitedbytes/gptoss-bigcodebench-20b-lora

Base model

openai/gpt-oss-20b
Adapter
(22)
this model