w2v-bert-2.0-Chinese-colab-CV16.0-aishell-ark-gs-vtb-ts-new_tokenizer
This model is a fine-tuned version of facebook/w2v-bert-2.0 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.7467
- Wer: 1.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 64
- total_train_batch_size: 256
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
1.6097 | 0.9959 | 76 | 0.9196 | 1.0 |
1.8219 | 1.9959 | 152 | 0.8598 | 1.0 |
1.413 | 2.9959 | 228 | 0.7986 | 1.0 |
1.4856 | 3.9959 | 304 | 0.7767 | 1.0 |
1.305 | 4.9959 | 380 | 0.7467 | 1.0 |
Framework versions
- Transformers 4.49.0
- Pytorch 2.5.1+cu121
- Datasets 2.17.1
- Tokenizers 0.21.0
- Downloads last month
- 0
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for urarik/w2v-bert-2.0-Chinese-colab-CV16.0-aishell-ark-gs-vtb-ts-new_tokenizer
Base model
facebook/w2v-bert-2.0