bert-base-nsmc

This model is a fine-tuned version of klue/bert-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.0289
  • Train Accuracy: 0.9915
  • Validation Loss: 0.5277
  • Validation Accuracy: 0.8766
  • Epoch: 4

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'transformers.optimization_tf', 'class_name': 'WarmUp', 'config': {'initial_learning_rate': 5e-05, 'decay_schedule_fn': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 1058, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'warmup_steps': 117, 'power': 1.0, 'name': None}, 'registered_name': 'WarmUp'}, 'decay': 0.0, 'beta_1': np.float32(0.9), 'beta_2': np.float32(0.999), 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.1}
  • training_precision: float32

Training results

Train Loss Train Accuracy Validation Loss Validation Accuracy Epoch
0.3956 0.8159 0.3503 0.8529 0
0.2169 0.9147 0.3258 0.8753 1
0.1077 0.9641 0.3907 0.8777 2
0.0498 0.9849 0.4785 0.8716 3
0.0289 0.9915 0.5277 0.8766 4

Framework versions

  • Transformers 4.55.2
  • TensorFlow 2.19.0
  • Datasets 4.0.0
  • Tokenizers 0.21.4
Downloads last month
21
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for use08168/bert-base-nsmc

Base model

klue/bert-base
Finetuned
(126)
this model