Text Generation
Transformers
Safetensors
English
qwen2
code
coding
programming
algorithms
systems-programming
code-generation
complexity-analysis
qwen2.5
fine-tuned
vanta-research
vanta-research-entities
vanta-research-code-models
wraith
conversational
Eval Results
text-generation-inference
4-bit precision
bitsandbytes
Tyler Williams
Initial commit: Wraith Coder 7B - Concise code assistant via iterative fine-tuning
cc49567
| # Wraith Coder 7B | |
| Signal-dense code generation model fine-tuned from Qwen2.5-Coder-7B-Instruct. | |
| ## Quick Start | |
| ### Installation | |
| ```bash | |
| pip install transformers torch | |
| ``` | |
| ### Basic Usage | |
| ```python | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| model = AutoModelForCausalLM.from_pretrained( | |
| "vanta-research/wraith-coder-7b", | |
| torch_dtype="auto", | |
| device_map="auto" | |
| ) | |
| tokenizer = AutoTokenizer.from_pretrained("vanta-research/wraith-coder-7b") | |
| messages = [ | |
| {"role": "user", "content": "Implement binary search with complexity analysis."} | |
| ] | |
| text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
| inputs = tokenizer(text, return_tensors="pt").to(model.device) | |
| outputs = model.generate(**inputs, max_new_tokens=512, temperature=0.7) | |
| print(tokenizer.decode(outputs[0], skip_special_tokens=True)) | |
| ``` | |
| ### Ollama Deployment | |
| ```bash | |
| # Convert to GGUF (Q4_K_M recommended) | |
| ollama create wraith-coder:7b -f Modelfile | |
| # Run inference | |
| ollama run wraith-coder:7b "Implement a LRU cache with O(1) operations" | |
| ``` | |
| ## Key Features | |
| - **62.6% more concise** than base Qwen2.5-Coder-7B while maintaining correctness | |
| - **60% complexity analysis coverage** across diverse coding challenges | |
| - **Multiple solution approaches** with trade-off discussions | |
| - **Systems programming knowledge** integrated throughout | |
| - **Production-ready** for senior engineering applications | |
| ## Performance Highlights | |
| | Metric | Base Qwen | Wraith Coder | Improvement | | |
| |--------|-----------|--------------|-------------| | |
| | Avg Response Length | 2,900 chars | 1,084 chars | 62.6% shorter | | |
| | Complexity Analysis | 40% | 60% | +50% coverage | | |
| | Multiple Approaches | 35% | 65% | +86% frequency | | |
| | Trade-off Discussion | 45% | 75% | +67% depth | | |
| ## Documentation | |
| Full documentation available in [README.md](./README.md) | |
| ## License | |
| Apache 2.0 | |
| ## Citation | |
| ```bibtex | |
| @misc{wraith-coder-7b, | |
| author = {Vanta Research}, | |
| title = {Wraith Coder 7B: Signal-Dense Code Generation through Iterative Fine-Tuning}, | |
| year = {2025}, | |
| publisher = {Hugging Face} | |
| } | |
| ``` | |