File size: 3,863 Bytes
86599fc 9fc6f09 86599fc 9548539 86599fc 9548539 86599fc 9fc6f09 86599fc 9fc6f09 86599fc 9fc6f09 86599fc 9fc6f09 86599fc 9fc6f09 86599fc 9fc6f09 86599fc 9fc6f09 86599fc 9fc6f09 86599fc 9fc6f09 86599fc 9fc6f09 86599fc 9fc6f09 86599fc 9fc6f09 86599fc 9fc6f09 86599fc 9fc6f09 86599fc 9548539 9fc6f09 86599fc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
---
library_name: transformers
language:
- fa
license: mit
base_model: openai/whisper-large-v3-turbo
tags:
- whisper
- whisper-large-v3
- persian
- farsi
- speech-recognition
- asr
- automatic-speech-recognition
- audio
- transformers
- generated_from_trainer
- h100
- huggingface
- vhdm
datasets:
- vhdm/persian-voice-v1.1
metrics:
- wer
model-index:
- name: vhdm/whisper-large-fa-v1
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: vhdm/persian-voice-v1
type: vhdm/persian-voice-v1.1
args: 'config: fa, split: test'
metrics:
- name: Wer
type: wer
value: 14.065335753176045
---
# 📢 vhdm/whisper-large-fa-v1
🎧 **Fine-tuned Whisper Large V3 Turbo for Persian Speech Recognition**
This model is a fine-tuned version of [`openai/whisper-large-v3-turbo`](https://huggingface.co/openai/whisper-large-v3-turbo) trained specifically on high-quality Persian speech data from the [`vhdm/persian-voice-v1`](https://huggingface.co/datasets/vhdm/persian-voice-v1) dataset.
---
## 🧪 Evaluation Results
| Metric | Value |
|--------|-------|
| **Final Validation Loss** | 0.1445 |
| **Word Error Rate (WER)** | **14.07%** |
The model shows consistent improvement over training and reaches a solid WER of ~14% on clean Persian speech data.
---
## 🧠 Model Description
This model aims to bring high-accuracy **automatic speech recognition (ASR)** to Persian language using the Whisper architecture. By leveraging OpenAI's powerful Whisper Large V3 Turbo backbone and carefully curated Persian data, it can transcribe Persian audio with high fidelity.
---
## ✅ Intended Use
This model is best suited for:
- 📱 Transcribing Persian voice notes
- 🗣️ Real-time or batch ASR for Persian podcasts, videos, and interviews
- 🔍 Creating searchable transcripts of Persian audio content
- 🧩 Fine-tuning or domain adaptation for Persian speech tasks
### 🚫 Limitations
- The model is fine-tuned on clean audio from specific sources and may perform poorly on noisy, accented, or dialectal speech.
- Not optimized for real-time streaming ASR (though inference is fast).
- It may occasionally produce hallucinations (incorrect but plausible words), a common issue in Whisper models.
---
## 📚 Training Data
The model was trained on the [`vhdm/persian-voice-v1`](https://huggingface.co/datasets/vhdm/persian-voice-v1) dataset, a curated collection of Persian speech recordings with high-quality transcriptions.
---
## ⚙️ Training Procedure
- **Optimizer**: AdamW (`betas=(0.9, 0.999)`, `eps=1e-08`)
- **Learning Rate**: 1e-5
- **Batch Sizes**: Train - 16 | Eval - 8
- **Scheduler**: Linear with 500 warmup steps
- **Mixed Precision**: Native AMP (automatic mixed precision)
- **Seed**: 42
- **Training Steps**: 5000
---
## ⏱️ Training Time & Hardware
The model was trained using an **NVIDIA H100 GPU**, and the full fine-tuning process took approximately **20 hours**.
---
## 📈 Training Progress
| Step | Training Loss | Validation Loss | WER (%) |
|------|----------------|-----------------|----------|
| 1000 | 0.2190 | 0.2093 | 22.07 |
| 2000 | 0.1191 | 0.1698 | 17.85 |
| 3000 | 0.1051 | 0.1485 | 15.79 |
| 4000 | 0.0644 | 0.1530 | 16.03 |
| 5000 | 0.0289 | 0.1445 | **14.07** |
---
## 🧰 Framework Versions
- `transformers`: 4.52.4
- `torch`: 2.7.1+cu118
- `datasets`: 3.6.0
- `tokenizers`: 0.21.1
---
## 🚀 Try it out
You can load and test the model using 🤗 Transformers:
```python
from transformers import pipeline
pipe = pipeline("automatic-speech-recognition", model="vhdm/whisper-large-fa-v1")
result = pipe("path_to_persian_audio.wav")
print(result["text"])
|