File size: 5,487 Bytes
79dc332 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 |
# Image Synthesis
Image synthesis is the base feature of DiffSynth Studio. We can generate images with very high resolution.
### OmniGen
OmniGen is a text-image-to-image model, you can synthesize an image according to several given reference images.
|Reference image 1|Reference image 2|Synthesized image|
|-|-|-|
||||
### Example: FLUX
Example script: [`flux_text_to_image.py`](./flux_text_to_image.py) and [`flux_text_to_image_low_vram.py`](./flux_text_to_image_low_vram.py)(low VRAM).
The original version of FLUX doesn't support classifier-free guidance; however, we believe that this guidance mechanism is an important feature for synthesizing beautiful images. You can enable it using the parameter `cfg_scale`, and the extra guidance scale introduced by FLUX is `embedded_guidance`.
|1024*1024 (original)|1024*1024 (classifier-free guidance)|2048*2048 (highres-fix)|
|-|-|-|
||||
### Example: Stable Diffusion
Example script: [`sd_text_to_image.py`](./sd_text_to_image.py)
LoRA Training: [`../train/stable_diffusion/`](../train/stable_diffusion/)
|512*512|1024*1024|2048*2048|4096*4096|
|-|-|-|-|
|||||
### Example: Stable Diffusion XL
Example script: [`sdxl_text_to_image.py`](./sdxl_text_to_image.py)
LoRA Training: [`../train/stable_diffusion_xl/`](../train/stable_diffusion_xl/)
|1024*1024|2048*2048|
|-|-|
|||
### Example: Stable Diffusion 3
Example script: [`sd3_text_to_image.py`](./sd3_text_to_image.py)
LoRA Training: [`../train/stable_diffusion_3/`](../train/stable_diffusion_3/)
|1024*1024|2048*2048|
|-|-|
|||
### Example: Kolors
Example script: [`kolors_text_to_image.py`](./kolors_text_to_image.py)
LoRA Training: [`../train/kolors/`](../train/kolors/)
|1024*1024|2048*2048|
|-|-|
|||
Kolors also support the models trained for SD-XL. For example, ControlNets and LoRAs. See [`kolors_with_sdxl_models.py`](./kolors_with_sdxl_models.py)
LoRA: https://civitai.com/models/73305/zyd232s-ink-style
|Base model|with LoRA (alpha=0.5)|with LoRA (alpha=1.0)|with LoRA (alpha=1.5)|
|-|-|-|-|
|||||
ControlNet: https://huggingface.co/xinsir/controlnet-union-sdxl-1.0
|Reference image|Depth image|with ControlNet|with ControlNet|
|-|-|-|-|
|||||
### Example: Hunyuan-DiT
Example script: [`hunyuan_dit_text_to_image.py`](./hunyuan_dit_text_to_image.py)
LoRA Training: [`../train/hunyuan_dit/`](../train/hunyuan_dit/)
|1024*1024|2048*2048|
|-|-|
|||
### Example: Stable Diffusion XL Turbo
Example script: [`sdxl_turbo.py`](./sdxl_turbo.py)
We highly recommend you to use this model in the WebUI.
|"black car"|"red car"|
|-|-|
|||
|