|
import torch |
|
import numpy as np |
|
from PIL import Image |
|
from torchvision.transforms import GaussianBlur |
|
|
|
|
|
|
|
class BasePipeline(torch.nn.Module): |
|
|
|
def __init__(self, device="cuda", torch_dtype=torch.float16, height_division_factor=64, width_division_factor=64): |
|
super().__init__() |
|
self.device = device |
|
self.torch_dtype = torch_dtype |
|
self.height_division_factor = height_division_factor |
|
self.width_division_factor = width_division_factor |
|
self.cpu_offload = False |
|
self.model_names = [] |
|
|
|
|
|
def check_resize_height_width(self, height, width): |
|
if height % self.height_division_factor != 0: |
|
height = (height + self.height_division_factor - 1) // self.height_division_factor * self.height_division_factor |
|
print(f"The height cannot be evenly divided by {self.height_division_factor}. We round it up to {height}.") |
|
if width % self.width_division_factor != 0: |
|
width = (width + self.width_division_factor - 1) // self.width_division_factor * self.width_division_factor |
|
print(f"The width cannot be evenly divided by {self.width_division_factor}. We round it up to {width}.") |
|
return height, width |
|
|
|
|
|
def preprocess_image(self, image): |
|
image = torch.Tensor(np.array(image, dtype=np.float32) * (2 / 255) - 1).permute(2, 0, 1).unsqueeze(0) |
|
return image |
|
|
|
|
|
def preprocess_images(self, images): |
|
return [self.preprocess_image(image) for image in images] |
|
|
|
|
|
def vae_output_to_image(self, vae_output): |
|
image = vae_output[0].cpu().float().permute(1, 2, 0).numpy() |
|
image = Image.fromarray(((image / 2 + 0.5).clip(0, 1) * 255).astype("uint8")) |
|
return image |
|
|
|
|
|
def vae_output_to_video(self, vae_output): |
|
video = vae_output.cpu().permute(1, 2, 0).numpy() |
|
video = [Image.fromarray(((image / 2 + 0.5).clip(0, 1) * 255).astype("uint8")) for image in video] |
|
return video |
|
|
|
|
|
def merge_latents(self, value, latents, masks, scales, blur_kernel_size=33, blur_sigma=10.0): |
|
if len(latents) > 0: |
|
blur = GaussianBlur(kernel_size=blur_kernel_size, sigma=blur_sigma) |
|
height, width = value.shape[-2:] |
|
weight = torch.ones_like(value) |
|
for latent, mask, scale in zip(latents, masks, scales): |
|
mask = self.preprocess_image(mask.resize((width, height))).mean(dim=1, keepdim=True) > 0 |
|
mask = mask.repeat(1, latent.shape[1], 1, 1).to(dtype=latent.dtype, device=latent.device) |
|
mask = blur(mask) |
|
value += latent * mask * scale |
|
weight += mask * scale |
|
value /= weight |
|
return value |
|
|
|
|
|
def control_noise_via_local_prompts(self, prompt_emb_global, prompt_emb_locals, masks, mask_scales, inference_callback, special_kwargs=None, special_local_kwargs_list=None): |
|
if special_kwargs is None: |
|
noise_pred_global = inference_callback(prompt_emb_global) |
|
else: |
|
noise_pred_global = inference_callback(prompt_emb_global, special_kwargs) |
|
if special_local_kwargs_list is None: |
|
noise_pred_locals = [inference_callback(prompt_emb_local) for prompt_emb_local in prompt_emb_locals] |
|
else: |
|
noise_pred_locals = [inference_callback(prompt_emb_local, special_kwargs) for prompt_emb_local, special_kwargs in zip(prompt_emb_locals, special_local_kwargs_list)] |
|
noise_pred = self.merge_latents(noise_pred_global, noise_pred_locals, masks, mask_scales) |
|
return noise_pred |
|
|
|
|
|
def extend_prompt(self, prompt, local_prompts, masks, mask_scales): |
|
local_prompts = local_prompts or [] |
|
masks = masks or [] |
|
mask_scales = mask_scales or [] |
|
extended_prompt_dict = self.prompter.extend_prompt(prompt) |
|
prompt = extended_prompt_dict.get("prompt", prompt) |
|
local_prompts += extended_prompt_dict.get("prompts", []) |
|
masks += extended_prompt_dict.get("masks", []) |
|
mask_scales += [100.0] * len(extended_prompt_dict.get("masks", [])) |
|
return prompt, local_prompts, masks, mask_scales |
|
|
|
|
|
def enable_cpu_offload(self): |
|
self.cpu_offload = True |
|
|
|
|
|
def load_models_to_device(self, loadmodel_names=[]): |
|
|
|
if not self.cpu_offload: |
|
return |
|
|
|
for model_name in self.model_names: |
|
if model_name not in loadmodel_names: |
|
model = getattr(self, model_name) |
|
if model is not None: |
|
if hasattr(model, "vram_management_enabled") and model.vram_management_enabled: |
|
for module in model.modules(): |
|
if hasattr(module, "offload"): |
|
module.offload() |
|
else: |
|
model.cpu() |
|
|
|
for model_name in loadmodel_names: |
|
model = getattr(self, model_name) |
|
if model is not None: |
|
if hasattr(model, "vram_management_enabled") and model.vram_management_enabled: |
|
for module in model.modules(): |
|
if hasattr(module, "onload"): |
|
module.onload() |
|
else: |
|
model.to(self.device) |
|
|
|
torch.cuda.empty_cache() |
|
|
|
|
|
def generate_noise(self, shape, seed=None, device="cpu", dtype=torch.float16): |
|
generator = None if seed is None else torch.Generator(device).manual_seed(seed) |
|
noise = torch.randn(shape, generator=generator, device=device, dtype=dtype) |
|
return noise |
|
|