|
from ..models import ModelManager, FluxTextEncoder2, CogDiT, CogVAEEncoder, CogVAEDecoder |
|
from ..prompters import CogPrompter |
|
from ..schedulers import EnhancedDDIMScheduler |
|
from .base import BasePipeline |
|
import torch |
|
from tqdm import tqdm |
|
from PIL import Image |
|
import numpy as np |
|
from einops import rearrange |
|
|
|
|
|
|
|
class CogVideoPipeline(BasePipeline): |
|
|
|
def __init__(self, device="cuda", torch_dtype=torch.float16): |
|
super().__init__(device=device, torch_dtype=torch_dtype, height_division_factor=16, width_division_factor=16) |
|
self.scheduler = EnhancedDDIMScheduler(rescale_zero_terminal_snr=True, prediction_type="v_prediction") |
|
self.prompter = CogPrompter() |
|
|
|
self.text_encoder: FluxTextEncoder2 = None |
|
self.dit: CogDiT = None |
|
self.vae_encoder: CogVAEEncoder = None |
|
self.vae_decoder: CogVAEDecoder = None |
|
|
|
|
|
def fetch_models(self, model_manager: ModelManager, prompt_refiner_classes=[]): |
|
self.text_encoder = model_manager.fetch_model("flux_text_encoder_2") |
|
self.dit = model_manager.fetch_model("cog_dit") |
|
self.vae_encoder = model_manager.fetch_model("cog_vae_encoder") |
|
self.vae_decoder = model_manager.fetch_model("cog_vae_decoder") |
|
self.prompter.fetch_models(self.text_encoder) |
|
self.prompter.load_prompt_refiners(model_manager, prompt_refiner_classes) |
|
|
|
|
|
@staticmethod |
|
def from_model_manager(model_manager: ModelManager, prompt_refiner_classes=[]): |
|
pipe = CogVideoPipeline( |
|
device=model_manager.device, |
|
torch_dtype=model_manager.torch_dtype |
|
) |
|
pipe.fetch_models(model_manager, prompt_refiner_classes) |
|
return pipe |
|
|
|
|
|
def tensor2video(self, frames): |
|
frames = rearrange(frames, "C T H W -> T H W C") |
|
frames = ((frames.float() + 1) * 127.5).clip(0, 255).cpu().numpy().astype(np.uint8) |
|
frames = [Image.fromarray(frame) for frame in frames] |
|
return frames |
|
|
|
|
|
def encode_prompt(self, prompt, positive=True): |
|
prompt_emb = self.prompter.encode_prompt(prompt, device=self.device, positive=positive) |
|
return {"prompt_emb": prompt_emb} |
|
|
|
|
|
def prepare_extra_input(self, latents): |
|
return {"image_rotary_emb": self.dit.prepare_rotary_positional_embeddings(latents.shape[3], latents.shape[4], latents.shape[2], device=self.device)} |
|
|
|
|
|
@torch.no_grad() |
|
def __call__( |
|
self, |
|
prompt, |
|
negative_prompt="", |
|
input_video=None, |
|
cfg_scale=7.0, |
|
denoising_strength=1.0, |
|
num_frames=49, |
|
height=480, |
|
width=720, |
|
num_inference_steps=20, |
|
tiled=False, |
|
tile_size=(60, 90), |
|
tile_stride=(30, 45), |
|
seed=None, |
|
progress_bar_cmd=tqdm, |
|
progress_bar_st=None, |
|
): |
|
height, width = self.check_resize_height_width(height, width) |
|
|
|
|
|
tiler_kwargs = {"tiled": tiled, "tile_size": tile_size, "tile_stride": tile_stride} |
|
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps, denoising_strength=denoising_strength) |
|
|
|
|
|
noise = self.generate_noise((1, 16, num_frames // 4 + 1, height//8, width//8), seed=seed, device="cpu", dtype=self.torch_dtype) |
|
|
|
if denoising_strength == 1.0: |
|
latents = noise.clone() |
|
else: |
|
input_video = self.preprocess_images(input_video) |
|
input_video = torch.stack(input_video, dim=2) |
|
latents = self.vae_encoder.encode_video(input_video, **tiler_kwargs, progress_bar=progress_bar_cmd).to(dtype=self.torch_dtype) |
|
latents = self.scheduler.add_noise(latents, noise, self.scheduler.timesteps[0]) |
|
if not tiled: latents = latents.to(self.device) |
|
|
|
|
|
prompt_emb_posi = self.encode_prompt(prompt, positive=True) |
|
if cfg_scale != 1.0: |
|
prompt_emb_nega = self.encode_prompt(negative_prompt, positive=False) |
|
|
|
|
|
extra_input = self.prepare_extra_input(latents) |
|
|
|
|
|
for progress_id, timestep in enumerate(progress_bar_cmd(self.scheduler.timesteps)): |
|
timestep = timestep.unsqueeze(0).to(self.device) |
|
|
|
|
|
noise_pred_posi = self.dit( |
|
latents, timestep=timestep, **prompt_emb_posi, **tiler_kwargs, **extra_input |
|
) |
|
if cfg_scale != 1.0: |
|
noise_pred_nega = self.dit( |
|
latents, timestep=timestep, **prompt_emb_nega, **tiler_kwargs, **extra_input |
|
) |
|
noise_pred = noise_pred_nega + cfg_scale * (noise_pred_posi - noise_pred_nega) |
|
else: |
|
noise_pred = noise_pred_posi |
|
|
|
|
|
latents = self.scheduler.step(noise_pred, self.scheduler.timesteps[progress_id], latents) |
|
|
|
|
|
if progress_bar_st is not None: |
|
progress_bar_st.progress(progress_id / len(self.scheduler.timesteps)) |
|
|
|
|
|
video = self.vae_decoder.decode_video(latents.to("cpu"), **tiler_kwargs, progress_bar=progress_bar_cmd) |
|
video = self.tensor2video(video[0]) |
|
|
|
return video |
|
|