|
from ..models.hunyuan_dit import HunyuanDiT |
|
from ..models.hunyuan_dit_text_encoder import HunyuanDiTCLIPTextEncoder, HunyuanDiTT5TextEncoder |
|
from ..models.sdxl_vae_encoder import SDXLVAEEncoder |
|
from ..models.sdxl_vae_decoder import SDXLVAEDecoder |
|
from ..models import ModelManager |
|
from ..prompters import HunyuanDiTPrompter |
|
from ..schedulers import EnhancedDDIMScheduler |
|
from .base import BasePipeline |
|
import torch |
|
from tqdm import tqdm |
|
import numpy as np |
|
|
|
|
|
|
|
class ImageSizeManager: |
|
def __init__(self): |
|
pass |
|
|
|
|
|
def _to_tuple(self, x): |
|
if isinstance(x, int): |
|
return x, x |
|
else: |
|
return x |
|
|
|
|
|
def get_fill_resize_and_crop(self, src, tgt): |
|
th, tw = self._to_tuple(tgt) |
|
h, w = self._to_tuple(src) |
|
|
|
tr = th / tw |
|
r = h / w |
|
|
|
|
|
if r > tr: |
|
resize_height = th |
|
resize_width = int(round(th / h * w)) |
|
else: |
|
resize_width = tw |
|
resize_height = int(round(tw / w * h)) |
|
|
|
crop_top = int(round((th - resize_height) / 2.0)) |
|
crop_left = int(round((tw - resize_width) / 2.0)) |
|
|
|
return (crop_top, crop_left), (crop_top + resize_height, crop_left + resize_width) |
|
|
|
|
|
def get_meshgrid(self, start, *args): |
|
if len(args) == 0: |
|
|
|
num = self._to_tuple(start) |
|
start = (0, 0) |
|
stop = num |
|
elif len(args) == 1: |
|
|
|
start = self._to_tuple(start) |
|
stop = self._to_tuple(args[0]) |
|
num = (stop[0] - start[0], stop[1] - start[1]) |
|
elif len(args) == 2: |
|
|
|
start = self._to_tuple(start) |
|
stop = self._to_tuple(args[0]) |
|
num = self._to_tuple(args[1]) |
|
else: |
|
raise ValueError(f"len(args) should be 0, 1 or 2, but got {len(args)}") |
|
|
|
grid_h = np.linspace(start[0], stop[0], num[0], endpoint=False, dtype=np.float32) |
|
grid_w = np.linspace(start[1], stop[1], num[1], endpoint=False, dtype=np.float32) |
|
grid = np.meshgrid(grid_w, grid_h) |
|
grid = np.stack(grid, axis=0) |
|
return grid |
|
|
|
|
|
def get_2d_rotary_pos_embed(self, embed_dim, start, *args, use_real=True): |
|
grid = self.get_meshgrid(start, *args) |
|
grid = grid.reshape([2, 1, *grid.shape[1:]]) |
|
pos_embed = self.get_2d_rotary_pos_embed_from_grid(embed_dim, grid, use_real=use_real) |
|
return pos_embed |
|
|
|
|
|
def get_2d_rotary_pos_embed_from_grid(self, embed_dim, grid, use_real=False): |
|
assert embed_dim % 4 == 0 |
|
|
|
|
|
emb_h = self.get_1d_rotary_pos_embed(embed_dim // 2, grid[0].reshape(-1), use_real=use_real) |
|
emb_w = self.get_1d_rotary_pos_embed(embed_dim // 2, grid[1].reshape(-1), use_real=use_real) |
|
|
|
if use_real: |
|
cos = torch.cat([emb_h[0], emb_w[0]], dim=1) |
|
sin = torch.cat([emb_h[1], emb_w[1]], dim=1) |
|
return cos, sin |
|
else: |
|
emb = torch.cat([emb_h, emb_w], dim=1) |
|
return emb |
|
|
|
|
|
def get_1d_rotary_pos_embed(self, dim: int, pos, theta: float = 10000.0, use_real=False): |
|
if isinstance(pos, int): |
|
pos = np.arange(pos) |
|
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim)) |
|
t = torch.from_numpy(pos).to(freqs.device) |
|
freqs = torch.outer(t, freqs).float() |
|
if use_real: |
|
freqs_cos = freqs.cos().repeat_interleave(2, dim=1) |
|
freqs_sin = freqs.sin().repeat_interleave(2, dim=1) |
|
return freqs_cos, freqs_sin |
|
else: |
|
freqs_cis = torch.polar(torch.ones_like(freqs), freqs) |
|
return freqs_cis |
|
|
|
|
|
def calc_rope(self, height, width): |
|
patch_size = 2 |
|
head_size = 88 |
|
th = height // 8 // patch_size |
|
tw = width // 8 // patch_size |
|
base_size = 512 // 8 // patch_size |
|
start, stop = self.get_fill_resize_and_crop((th, tw), base_size) |
|
sub_args = [start, stop, (th, tw)] |
|
rope = self.get_2d_rotary_pos_embed(head_size, *sub_args) |
|
return rope |
|
|
|
|
|
|
|
class HunyuanDiTImagePipeline(BasePipeline): |
|
|
|
def __init__(self, device="cuda", torch_dtype=torch.float16): |
|
super().__init__(device=device, torch_dtype=torch_dtype, height_division_factor=16, width_division_factor=16) |
|
self.scheduler = EnhancedDDIMScheduler(prediction_type="v_prediction", beta_start=0.00085, beta_end=0.03) |
|
self.prompter = HunyuanDiTPrompter() |
|
self.image_size_manager = ImageSizeManager() |
|
|
|
self.text_encoder: HunyuanDiTCLIPTextEncoder = None |
|
self.text_encoder_t5: HunyuanDiTT5TextEncoder = None |
|
self.dit: HunyuanDiT = None |
|
self.vae_decoder: SDXLVAEDecoder = None |
|
self.vae_encoder: SDXLVAEEncoder = None |
|
self.model_names = ['text_encoder', 'text_encoder_t5', 'dit', 'vae_decoder', 'vae_encoder'] |
|
|
|
|
|
def denoising_model(self): |
|
return self.dit |
|
|
|
|
|
def fetch_models(self, model_manager: ModelManager, prompt_refiner_classes=[]): |
|
|
|
self.text_encoder = model_manager.fetch_model("hunyuan_dit_clip_text_encoder") |
|
self.text_encoder_t5 = model_manager.fetch_model("hunyuan_dit_t5_text_encoder") |
|
self.dit = model_manager.fetch_model("hunyuan_dit") |
|
self.vae_decoder = model_manager.fetch_model("sdxl_vae_decoder") |
|
self.vae_encoder = model_manager.fetch_model("sdxl_vae_encoder") |
|
self.prompter.fetch_models(self.text_encoder, self.text_encoder_t5) |
|
self.prompter.load_prompt_refiners(model_manager, prompt_refiner_classes) |
|
|
|
|
|
@staticmethod |
|
def from_model_manager(model_manager: ModelManager, prompt_refiner_classes=[], device=None): |
|
pipe = HunyuanDiTImagePipeline( |
|
device=model_manager.device if device is None else device, |
|
torch_dtype=model_manager.torch_dtype, |
|
) |
|
pipe.fetch_models(model_manager, prompt_refiner_classes) |
|
return pipe |
|
|
|
|
|
def encode_image(self, image, tiled=False, tile_size=64, tile_stride=32): |
|
latents = self.vae_encoder(image, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride) |
|
return latents |
|
|
|
|
|
def decode_image(self, latent, tiled=False, tile_size=64, tile_stride=32): |
|
image = self.vae_decoder(latent.to(self.device), tiled=tiled, tile_size=tile_size, tile_stride=tile_stride) |
|
image = self.vae_output_to_image(image) |
|
return image |
|
|
|
|
|
def encode_prompt(self, prompt, clip_skip=1, clip_skip_2=1, positive=True): |
|
text_emb, text_emb_mask, text_emb_t5, text_emb_mask_t5 = self.prompter.encode_prompt( |
|
prompt, |
|
clip_skip=clip_skip, |
|
clip_skip_2=clip_skip_2, |
|
positive=positive, |
|
device=self.device |
|
) |
|
return { |
|
"text_emb": text_emb, |
|
"text_emb_mask": text_emb_mask, |
|
"text_emb_t5": text_emb_t5, |
|
"text_emb_mask_t5": text_emb_mask_t5 |
|
} |
|
|
|
|
|
def prepare_extra_input(self, latents=None, tiled=False, tile_size=64, tile_stride=32): |
|
batch_size, height, width = latents.shape[0], latents.shape[2] * 8, latents.shape[3] * 8 |
|
if tiled: |
|
height, width = tile_size * 16, tile_size * 16 |
|
image_meta_size = torch.as_tensor([width, height, width, height, 0, 0]).to(device=self.device) |
|
freqs_cis_img = self.image_size_manager.calc_rope(height, width) |
|
image_meta_size = torch.stack([image_meta_size] * batch_size) |
|
return { |
|
"size_emb": image_meta_size, |
|
"freq_cis_img": (freqs_cis_img[0].to(dtype=self.torch_dtype, device=self.device), freqs_cis_img[1].to(dtype=self.torch_dtype, device=self.device)), |
|
"tiled": tiled, |
|
"tile_size": tile_size, |
|
"tile_stride": tile_stride |
|
} |
|
|
|
|
|
@torch.no_grad() |
|
def __call__( |
|
self, |
|
prompt, |
|
local_prompts=[], |
|
masks=[], |
|
mask_scales=[], |
|
negative_prompt="", |
|
cfg_scale=7.5, |
|
clip_skip=1, |
|
clip_skip_2=1, |
|
input_image=None, |
|
reference_strengths=[0.4], |
|
denoising_strength=1.0, |
|
height=1024, |
|
width=1024, |
|
num_inference_steps=20, |
|
tiled=False, |
|
tile_size=64, |
|
tile_stride=32, |
|
seed=None, |
|
progress_bar_cmd=tqdm, |
|
progress_bar_st=None, |
|
): |
|
height, width = self.check_resize_height_width(height, width) |
|
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps, denoising_strength) |
|
|
|
|
|
noise = self.generate_noise((1, 4, height//8, width//8), seed=seed, device=self.device, dtype=self.torch_dtype) |
|
if input_image is not None: |
|
self.load_models_to_device(['vae_encoder']) |
|
image = self.preprocess_image(input_image).to(device=self.device, dtype=torch.float32) |
|
latents = self.vae_encoder(image, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride).to(self.torch_dtype) |
|
latents = self.scheduler.add_noise(latents, noise, timestep=self.scheduler.timesteps[0]) |
|
else: |
|
latents = noise.clone() |
|
|
|
|
|
self.load_models_to_device(['text_encoder', 'text_encoder_t5']) |
|
prompt_emb_posi = self.encode_prompt(prompt, clip_skip=clip_skip, clip_skip_2=clip_skip_2, positive=True) |
|
if cfg_scale != 1.0: |
|
prompt_emb_nega = self.encode_prompt(negative_prompt, clip_skip=clip_skip, clip_skip_2=clip_skip_2, positive=True) |
|
prompt_emb_locals = [self.encode_prompt(prompt_local, clip_skip=clip_skip, clip_skip_2=clip_skip_2, positive=True) for prompt_local in local_prompts] |
|
|
|
|
|
extra_input = self.prepare_extra_input(latents, tiled, tile_size) |
|
|
|
|
|
self.load_models_to_device(['dit']) |
|
for progress_id, timestep in enumerate(progress_bar_cmd(self.scheduler.timesteps)): |
|
timestep = torch.tensor([timestep]).to(dtype=self.torch_dtype, device=self.device) |
|
|
|
|
|
inference_callback = lambda prompt_emb_posi: self.dit(latents, timestep=timestep, **prompt_emb_posi, **extra_input) |
|
noise_pred_posi = self.control_noise_via_local_prompts(prompt_emb_posi, prompt_emb_locals, masks, mask_scales, inference_callback) |
|
|
|
if cfg_scale != 1.0: |
|
|
|
noise_pred_nega = self.dit( |
|
latents, timestep=timestep, **prompt_emb_nega, **extra_input, |
|
) |
|
|
|
noise_pred = noise_pred_nega + cfg_scale * (noise_pred_posi - noise_pred_nega) |
|
else: |
|
noise_pred = noise_pred_posi |
|
|
|
latents = self.scheduler.step(noise_pred, self.scheduler.timesteps[progress_id], latents) |
|
|
|
if progress_bar_st is not None: |
|
progress_bar_st.progress(progress_id / len(self.scheduler.timesteps)) |
|
|
|
|
|
self.load_models_to_device(['vae_decoder']) |
|
image = self.decode_image(latents.to(torch.float32), tiled=tiled, tile_size=tile_size, tile_stride=tile_stride) |
|
|
|
|
|
self.load_models_to_device([]) |
|
return image |
|
|