|
from ..models import ModelManager, SD3TextEncoder1, HunyuanVideoVAEDecoder, HunyuanVideoVAEEncoder |
|
from ..models.hunyuan_video_dit import HunyuanVideoDiT |
|
from ..models.hunyuan_video_text_encoder import HunyuanVideoLLMEncoder |
|
from ..schedulers.flow_match import FlowMatchScheduler |
|
from .base import BasePipeline |
|
from ..prompters import HunyuanVideoPrompter |
|
import torch |
|
from einops import rearrange |
|
import numpy as np |
|
from PIL import Image |
|
from tqdm import tqdm |
|
|
|
|
|
|
|
class HunyuanVideoPipeline(BasePipeline): |
|
|
|
def __init__(self, device="cuda", torch_dtype=torch.float16): |
|
super().__init__(device=device, torch_dtype=torch_dtype) |
|
self.scheduler = FlowMatchScheduler(shift=7.0, sigma_min=0.0, extra_one_step=True) |
|
self.prompter = HunyuanVideoPrompter() |
|
self.text_encoder_1: SD3TextEncoder1 = None |
|
self.text_encoder_2: HunyuanVideoLLMEncoder = None |
|
self.dit: HunyuanVideoDiT = None |
|
self.vae_decoder: HunyuanVideoVAEDecoder = None |
|
self.vae_encoder: HunyuanVideoVAEEncoder = None |
|
self.model_names = ['text_encoder_1', 'text_encoder_2', 'dit', 'vae_decoder', 'vae_encoder'] |
|
self.vram_management = False |
|
|
|
|
|
def enable_vram_management(self): |
|
self.vram_management = True |
|
self.enable_cpu_offload() |
|
self.text_encoder_2.enable_auto_offload(dtype=self.torch_dtype, device=self.device) |
|
self.dit.enable_auto_offload(dtype=self.torch_dtype, device=self.device) |
|
|
|
|
|
def fetch_models(self, model_manager: ModelManager): |
|
self.text_encoder_1 = model_manager.fetch_model("sd3_text_encoder_1") |
|
self.text_encoder_2 = model_manager.fetch_model("hunyuan_video_text_encoder_2") |
|
self.dit = model_manager.fetch_model("hunyuan_video_dit") |
|
self.vae_decoder = model_manager.fetch_model("hunyuan_video_vae_decoder") |
|
self.vae_encoder = model_manager.fetch_model("hunyuan_video_vae_encoder") |
|
self.prompter.fetch_models(self.text_encoder_1, self.text_encoder_2) |
|
|
|
|
|
@staticmethod |
|
def from_model_manager(model_manager: ModelManager, torch_dtype=None, device=None, enable_vram_management=True): |
|
if device is None: device = model_manager.device |
|
if torch_dtype is None: torch_dtype = model_manager.torch_dtype |
|
pipe = HunyuanVideoPipeline(device=device, torch_dtype=torch_dtype) |
|
pipe.fetch_models(model_manager) |
|
if enable_vram_management: |
|
pipe.enable_vram_management() |
|
return pipe |
|
|
|
|
|
def encode_prompt(self, prompt, positive=True, clip_sequence_length=77, llm_sequence_length=256): |
|
prompt_emb, pooled_prompt_emb, text_mask = self.prompter.encode_prompt( |
|
prompt, device=self.device, positive=positive, clip_sequence_length=clip_sequence_length, llm_sequence_length=llm_sequence_length |
|
) |
|
return {"prompt_emb": prompt_emb, "pooled_prompt_emb": pooled_prompt_emb, "text_mask": text_mask} |
|
|
|
|
|
def prepare_extra_input(self, latents=None, guidance=1.0): |
|
freqs_cos, freqs_sin = self.dit.prepare_freqs(latents) |
|
guidance = torch.Tensor([guidance] * latents.shape[0]).to(device=latents.device, dtype=latents.dtype) |
|
return {"freqs_cos": freqs_cos, "freqs_sin": freqs_sin, "guidance": guidance} |
|
|
|
|
|
def tensor2video(self, frames): |
|
frames = rearrange(frames, "C T H W -> T H W C") |
|
frames = ((frames.float() + 1) * 127.5).clip(0, 255).cpu().numpy().astype(np.uint8) |
|
frames = [Image.fromarray(frame) for frame in frames] |
|
return frames |
|
|
|
|
|
def encode_video(self, frames, tile_size=(17, 30, 30), tile_stride=(12, 20, 20)): |
|
tile_size = ((tile_size[0] - 1) * 4 + 1, tile_size[1] * 8, tile_size[2] * 8) |
|
tile_stride = (tile_stride[0] * 4, tile_stride[1] * 8, tile_stride[2] * 8) |
|
latents = self.vae_encoder.encode_video(frames, tile_size=tile_size, tile_stride=tile_stride) |
|
return latents |
|
|
|
|
|
@torch.no_grad() |
|
def __call__( |
|
self, |
|
prompt, |
|
negative_prompt="", |
|
input_video=None, |
|
denoising_strength=1.0, |
|
seed=None, |
|
rand_device=None, |
|
height=720, |
|
width=1280, |
|
num_frames=129, |
|
embedded_guidance=6.0, |
|
cfg_scale=1.0, |
|
num_inference_steps=30, |
|
tea_cache_l1_thresh=None, |
|
tile_size=(17, 30, 30), |
|
tile_stride=(12, 20, 20), |
|
step_processor=None, |
|
progress_bar_cmd=lambda x: x, |
|
progress_bar_st=None, |
|
): |
|
|
|
tiler_kwargs = {"tile_size": tile_size, "tile_stride": tile_stride} |
|
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps, denoising_strength) |
|
|
|
|
|
rand_device = self.device if rand_device is None else rand_device |
|
noise = self.generate_noise((1, 16, (num_frames - 1) // 4 + 1, height//8, width//8), seed=seed, device=rand_device, dtype=self.torch_dtype).to(self.device) |
|
if input_video is not None: |
|
self.load_models_to_device(['vae_encoder']) |
|
input_video = self.preprocess_images(input_video) |
|
input_video = torch.stack(input_video, dim=2) |
|
latents = self.encode_video(input_video, **tiler_kwargs).to(dtype=self.torch_dtype, device=self.device) |
|
latents = self.scheduler.add_noise(latents, noise, timestep=self.scheduler.timesteps[0]) |
|
else: |
|
latents = noise |
|
|
|
|
|
self.load_models_to_device(["text_encoder_1"] if self.vram_management else ["text_encoder_1", "text_encoder_2"]) |
|
prompt_emb_posi = self.encode_prompt(prompt, positive=True) |
|
if cfg_scale != 1.0: |
|
prompt_emb_nega = self.encode_prompt(negative_prompt, positive=False) |
|
|
|
|
|
extra_input = self.prepare_extra_input(latents, guidance=embedded_guidance) |
|
|
|
|
|
tea_cache_kwargs = {"tea_cache": TeaCache(num_inference_steps, rel_l1_thresh=tea_cache_l1_thresh) if tea_cache_l1_thresh is not None else None} |
|
|
|
|
|
self.load_models_to_device([] if self.vram_management else ["dit"]) |
|
for progress_id, timestep in enumerate(progress_bar_cmd(self.scheduler.timesteps)): |
|
timestep = timestep.unsqueeze(0).to(self.device) |
|
print(f"Step {progress_id + 1} / {len(self.scheduler.timesteps)}") |
|
|
|
|
|
with torch.autocast(device_type=self.device, dtype=self.torch_dtype): |
|
noise_pred_posi = lets_dance_hunyuan_video(self.dit, latents, timestep, **prompt_emb_posi, **extra_input, **tea_cache_kwargs) |
|
if cfg_scale != 1.0: |
|
noise_pred_nega = lets_dance_hunyuan_video(self.dit, latents, timestep, **prompt_emb_nega, **extra_input) |
|
noise_pred = noise_pred_nega + cfg_scale * (noise_pred_posi - noise_pred_nega) |
|
else: |
|
noise_pred = noise_pred_posi |
|
|
|
|
|
if step_processor is not None: |
|
self.load_models_to_device(['vae_decoder']) |
|
rendered_frames = self.scheduler.step(noise_pred, self.scheduler.timesteps[progress_id], latents, to_final=True) |
|
rendered_frames = self.vae_decoder.decode_video(rendered_frames, **tiler_kwargs) |
|
rendered_frames = self.tensor2video(rendered_frames[0]) |
|
rendered_frames = step_processor(rendered_frames, original_frames=input_video) |
|
self.load_models_to_device(['vae_encoder']) |
|
rendered_frames = self.preprocess_images(rendered_frames) |
|
rendered_frames = torch.stack(rendered_frames, dim=2) |
|
target_latents = self.encode_video(rendered_frames).to(dtype=self.torch_dtype, device=self.device) |
|
noise_pred = self.scheduler.return_to_timestep(self.scheduler.timesteps[progress_id], latents, target_latents) |
|
self.load_models_to_device([] if self.vram_management else ["dit"]) |
|
|
|
|
|
latents = self.scheduler.step(noise_pred, self.scheduler.timesteps[progress_id], latents) |
|
|
|
|
|
self.load_models_to_device(['vae_decoder']) |
|
frames = self.vae_decoder.decode_video(latents, **tiler_kwargs) |
|
self.load_models_to_device([]) |
|
frames = self.tensor2video(frames[0]) |
|
|
|
return frames |
|
|
|
|
|
|
|
class TeaCache: |
|
def __init__(self, num_inference_steps, rel_l1_thresh): |
|
self.num_inference_steps = num_inference_steps |
|
self.step = 0 |
|
self.accumulated_rel_l1_distance = 0 |
|
self.previous_modulated_input = None |
|
self.rel_l1_thresh = rel_l1_thresh |
|
self.previous_residual = None |
|
self.previous_hidden_states = None |
|
|
|
def check(self, dit: HunyuanVideoDiT, img, vec): |
|
img_ = img.clone() |
|
vec_ = vec.clone() |
|
img_mod1_shift, img_mod1_scale, _, _, _, _ = dit.double_blocks[0].component_a.mod(vec_).chunk(6, dim=-1) |
|
normed_inp = dit.double_blocks[0].component_a.norm1(img_) |
|
modulated_inp = normed_inp * (1 + img_mod1_scale.unsqueeze(1)) + img_mod1_shift.unsqueeze(1) |
|
if self.step == 0 or self.step == self.num_inference_steps - 1: |
|
should_calc = True |
|
self.accumulated_rel_l1_distance = 0 |
|
else: |
|
coefficients = [7.33226126e+02, -4.01131952e+02, 6.75869174e+01, -3.14987800e+00, 9.61237896e-02] |
|
rescale_func = np.poly1d(coefficients) |
|
self.accumulated_rel_l1_distance += rescale_func(((modulated_inp-self.previous_modulated_input).abs().mean() / self.previous_modulated_input.abs().mean()).cpu().item()) |
|
if self.accumulated_rel_l1_distance < self.rel_l1_thresh: |
|
should_calc = False |
|
else: |
|
should_calc = True |
|
self.accumulated_rel_l1_distance = 0 |
|
self.previous_modulated_input = modulated_inp |
|
self.step += 1 |
|
if self.step == self.num_inference_steps: |
|
self.step = 0 |
|
if should_calc: |
|
self.previous_hidden_states = img.clone() |
|
return not should_calc |
|
|
|
def store(self, hidden_states): |
|
self.previous_residual = hidden_states - self.previous_hidden_states |
|
self.previous_hidden_states = None |
|
|
|
def update(self, hidden_states): |
|
hidden_states = hidden_states + self.previous_residual |
|
return hidden_states |
|
|
|
|
|
|
|
def lets_dance_hunyuan_video( |
|
dit: HunyuanVideoDiT, |
|
x: torch.Tensor, |
|
t: torch.Tensor, |
|
prompt_emb: torch.Tensor = None, |
|
text_mask: torch.Tensor = None, |
|
pooled_prompt_emb: torch.Tensor = None, |
|
freqs_cos: torch.Tensor = None, |
|
freqs_sin: torch.Tensor = None, |
|
guidance: torch.Tensor = None, |
|
tea_cache: TeaCache = None, |
|
**kwargs |
|
): |
|
B, C, T, H, W = x.shape |
|
|
|
vec = dit.time_in(t, dtype=torch.float32) + dit.vector_in(pooled_prompt_emb) + dit.guidance_in(guidance * 1000, dtype=torch.float32) |
|
img = dit.img_in(x) |
|
txt = dit.txt_in(prompt_emb, t, text_mask) |
|
|
|
|
|
if tea_cache is not None: |
|
tea_cache_update = tea_cache.check(dit, img, vec) |
|
else: |
|
tea_cache_update = False |
|
|
|
if tea_cache_update: |
|
print("TeaCache skip forward.") |
|
img = tea_cache.update(img) |
|
else: |
|
for block in tqdm(dit.double_blocks, desc="Double stream blocks"): |
|
img, txt = block(img, txt, vec, (freqs_cos, freqs_sin)) |
|
|
|
x = torch.concat([img, txt], dim=1) |
|
for block in tqdm(dit.single_blocks, desc="Single stream blocks"): |
|
x = block(x, vec, (freqs_cos, freqs_sin)) |
|
img = x[:, :-256] |
|
|
|
if tea_cache is not None: |
|
tea_cache.store(img) |
|
img = dit.final_layer(img, vec) |
|
img = dit.unpatchify(img, T=T//1, H=H//2, W=W//2) |
|
return img |
|
|