|
from ..models import ModelManager, SD3TextEncoder1, SD3TextEncoder2, SD3TextEncoder3, SD3DiT, SD3VAEDecoder, SD3VAEEncoder |
|
from ..prompters import SD3Prompter |
|
from ..schedulers import FlowMatchScheduler |
|
from .base import BasePipeline |
|
import torch |
|
from tqdm import tqdm |
|
|
|
|
|
|
|
class SD3ImagePipeline(BasePipeline): |
|
|
|
def __init__(self, device="cuda", torch_dtype=torch.float16): |
|
super().__init__(device=device, torch_dtype=torch_dtype, height_division_factor=16, width_division_factor=16) |
|
self.scheduler = FlowMatchScheduler() |
|
self.prompter = SD3Prompter() |
|
|
|
self.text_encoder_1: SD3TextEncoder1 = None |
|
self.text_encoder_2: SD3TextEncoder2 = None |
|
self.text_encoder_3: SD3TextEncoder3 = None |
|
self.dit: SD3DiT = None |
|
self.vae_decoder: SD3VAEDecoder = None |
|
self.vae_encoder: SD3VAEEncoder = None |
|
self.model_names = ['text_encoder_1', 'text_encoder_2', 'text_encoder_3', 'dit', 'vae_decoder', 'vae_encoder'] |
|
|
|
|
|
def denoising_model(self): |
|
return self.dit |
|
|
|
|
|
def fetch_models(self, model_manager: ModelManager, prompt_refiner_classes=[]): |
|
self.text_encoder_1 = model_manager.fetch_model("sd3_text_encoder_1") |
|
self.text_encoder_2 = model_manager.fetch_model("sd3_text_encoder_2") |
|
self.text_encoder_3 = model_manager.fetch_model("sd3_text_encoder_3") |
|
self.dit = model_manager.fetch_model("sd3_dit") |
|
self.vae_decoder = model_manager.fetch_model("sd3_vae_decoder") |
|
self.vae_encoder = model_manager.fetch_model("sd3_vae_encoder") |
|
self.prompter.fetch_models(self.text_encoder_1, self.text_encoder_2, self.text_encoder_3) |
|
self.prompter.load_prompt_refiners(model_manager, prompt_refiner_classes) |
|
|
|
|
|
@staticmethod |
|
def from_model_manager(model_manager: ModelManager, prompt_refiner_classes=[], device=None): |
|
pipe = SD3ImagePipeline( |
|
device=model_manager.device if device is None else device, |
|
torch_dtype=model_manager.torch_dtype, |
|
) |
|
pipe.fetch_models(model_manager, prompt_refiner_classes) |
|
return pipe |
|
|
|
|
|
def encode_image(self, image, tiled=False, tile_size=64, tile_stride=32): |
|
latents = self.vae_encoder(image, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride) |
|
return latents |
|
|
|
|
|
def decode_image(self, latent, tiled=False, tile_size=64, tile_stride=32): |
|
image = self.vae_decoder(latent.to(self.device), tiled=tiled, tile_size=tile_size, tile_stride=tile_stride) |
|
image = self.vae_output_to_image(image) |
|
return image |
|
|
|
|
|
def encode_prompt(self, prompt, positive=True, t5_sequence_length=77): |
|
prompt_emb, pooled_prompt_emb = self.prompter.encode_prompt( |
|
prompt, device=self.device, positive=positive, t5_sequence_length=t5_sequence_length |
|
) |
|
return {"prompt_emb": prompt_emb, "pooled_prompt_emb": pooled_prompt_emb} |
|
|
|
|
|
def prepare_extra_input(self, latents=None): |
|
return {} |
|
|
|
|
|
@torch.no_grad() |
|
def __call__( |
|
self, |
|
prompt, |
|
local_prompts=[], |
|
masks=[], |
|
mask_scales=[], |
|
negative_prompt="", |
|
cfg_scale=7.5, |
|
input_image=None, |
|
denoising_strength=1.0, |
|
height=1024, |
|
width=1024, |
|
num_inference_steps=20, |
|
t5_sequence_length=77, |
|
tiled=False, |
|
tile_size=128, |
|
tile_stride=64, |
|
seed=None, |
|
progress_bar_cmd=tqdm, |
|
progress_bar_st=None, |
|
): |
|
height, width = self.check_resize_height_width(height, width) |
|
|
|
|
|
tiler_kwargs = {"tiled": tiled, "tile_size": tile_size, "tile_stride": tile_stride} |
|
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps, denoising_strength) |
|
|
|
|
|
if input_image is not None: |
|
self.load_models_to_device(['vae_encoder']) |
|
image = self.preprocess_image(input_image).to(device=self.device, dtype=self.torch_dtype) |
|
latents = self.encode_image(image, **tiler_kwargs) |
|
noise = self.generate_noise((1, 16, height//8, width//8), seed=seed, device=self.device, dtype=self.torch_dtype) |
|
latents = self.scheduler.add_noise(latents, noise, timestep=self.scheduler.timesteps[0]) |
|
else: |
|
latents = self.generate_noise((1, 16, height//8, width//8), seed=seed, device=self.device, dtype=self.torch_dtype) |
|
|
|
|
|
self.load_models_to_device(['text_encoder_1', 'text_encoder_2', 'text_encoder_3']) |
|
prompt_emb_posi = self.encode_prompt(prompt, positive=True, t5_sequence_length=t5_sequence_length) |
|
prompt_emb_nega = self.encode_prompt(negative_prompt, positive=False, t5_sequence_length=t5_sequence_length) |
|
prompt_emb_locals = [self.encode_prompt(prompt_local, t5_sequence_length=t5_sequence_length) for prompt_local in local_prompts] |
|
|
|
|
|
self.load_models_to_device(['dit']) |
|
for progress_id, timestep in enumerate(progress_bar_cmd(self.scheduler.timesteps)): |
|
timestep = timestep.unsqueeze(0).to(self.device) |
|
|
|
|
|
inference_callback = lambda prompt_emb_posi: self.dit( |
|
latents, timestep=timestep, **prompt_emb_posi, **tiler_kwargs, |
|
) |
|
noise_pred_posi = self.control_noise_via_local_prompts(prompt_emb_posi, prompt_emb_locals, masks, mask_scales, inference_callback) |
|
noise_pred_nega = self.dit( |
|
latents, timestep=timestep, **prompt_emb_nega, **tiler_kwargs, |
|
) |
|
noise_pred = noise_pred_nega + cfg_scale * (noise_pred_posi - noise_pred_nega) |
|
|
|
|
|
latents = self.scheduler.step(noise_pred, self.scheduler.timesteps[progress_id], latents) |
|
|
|
|
|
if progress_bar_st is not None: |
|
progress_bar_st.progress(progress_id / len(self.scheduler.timesteps)) |
|
|
|
|
|
self.load_models_to_device(['vae_decoder']) |
|
image = self.decode_image(latents, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride) |
|
|
|
|
|
self.load_models_to_device([]) |
|
return image |
|
|