|
from ..models import SDXLTextEncoder, SDXLTextEncoder2, SDXLUNet, SDXLVAEDecoder, SDXLVAEEncoder, SDXLIpAdapter, IpAdapterXLCLIPImageEmbedder |
|
from ..models.kolors_text_encoder import ChatGLMModel |
|
from ..models.model_manager import ModelManager |
|
from ..controlnets import MultiControlNetManager, ControlNetUnit, ControlNetConfigUnit, Annotator |
|
from ..prompters import SDXLPrompter, KolorsPrompter |
|
from ..schedulers import EnhancedDDIMScheduler |
|
from .base import BasePipeline |
|
from .dancer import lets_dance_xl |
|
from typing import List |
|
import torch |
|
from tqdm import tqdm |
|
from einops import repeat |
|
|
|
|
|
|
|
class SDXLImagePipeline(BasePipeline): |
|
|
|
def __init__(self, device="cuda", torch_dtype=torch.float16): |
|
super().__init__(device=device, torch_dtype=torch_dtype) |
|
self.scheduler = EnhancedDDIMScheduler() |
|
self.prompter = SDXLPrompter() |
|
|
|
self.text_encoder: SDXLTextEncoder = None |
|
self.text_encoder_2: SDXLTextEncoder2 = None |
|
self.text_encoder_kolors: ChatGLMModel = None |
|
self.unet: SDXLUNet = None |
|
self.vae_decoder: SDXLVAEDecoder = None |
|
self.vae_encoder: SDXLVAEEncoder = None |
|
self.controlnet: MultiControlNetManager = None |
|
self.ipadapter_image_encoder: IpAdapterXLCLIPImageEmbedder = None |
|
self.ipadapter: SDXLIpAdapter = None |
|
self.model_names = ['text_encoder', 'text_encoder_2', 'text_encoder_kolors', 'unet', 'vae_decoder', 'vae_encoder', 'controlnet', 'ipadapter_image_encoder', 'ipadapter'] |
|
|
|
|
|
def denoising_model(self): |
|
return self.unet |
|
|
|
|
|
def fetch_models(self, model_manager: ModelManager, controlnet_config_units: List[ControlNetConfigUnit]=[], prompt_refiner_classes=[]): |
|
|
|
self.text_encoder = model_manager.fetch_model("sdxl_text_encoder") |
|
self.text_encoder_2 = model_manager.fetch_model("sdxl_text_encoder_2") |
|
self.text_encoder_kolors = model_manager.fetch_model("kolors_text_encoder") |
|
self.unet = model_manager.fetch_model("sdxl_unet") |
|
self.vae_decoder = model_manager.fetch_model("sdxl_vae_decoder") |
|
self.vae_encoder = model_manager.fetch_model("sdxl_vae_encoder") |
|
|
|
|
|
controlnet_units = [] |
|
for config in controlnet_config_units: |
|
controlnet_unit = ControlNetUnit( |
|
Annotator(config.processor_id, device=self.device), |
|
model_manager.fetch_model("sdxl_controlnet", config.model_path), |
|
config.scale |
|
) |
|
controlnet_units.append(controlnet_unit) |
|
self.controlnet = MultiControlNetManager(controlnet_units) |
|
|
|
|
|
self.ipadapter = model_manager.fetch_model("sdxl_ipadapter") |
|
self.ipadapter_image_encoder = model_manager.fetch_model("sdxl_ipadapter_clip_image_encoder") |
|
|
|
|
|
if self.text_encoder_kolors is not None: |
|
print("Switch to Kolors. The prompter and scheduler will be replaced.") |
|
self.prompter = KolorsPrompter() |
|
self.prompter.fetch_models(self.text_encoder_kolors) |
|
self.scheduler = EnhancedDDIMScheduler(beta_end=0.014, num_train_timesteps=1100) |
|
else: |
|
self.prompter.fetch_models(self.text_encoder, self.text_encoder_2) |
|
self.prompter.load_prompt_refiners(model_manager, prompt_refiner_classes) |
|
|
|
|
|
@staticmethod |
|
def from_model_manager(model_manager: ModelManager, controlnet_config_units: List[ControlNetConfigUnit]=[], prompt_refiner_classes=[], device=None): |
|
pipe = SDXLImagePipeline( |
|
device=model_manager.device if device is None else device, |
|
torch_dtype=model_manager.torch_dtype, |
|
) |
|
pipe.fetch_models(model_manager, controlnet_config_units, prompt_refiner_classes) |
|
return pipe |
|
|
|
|
|
def encode_image(self, image, tiled=False, tile_size=64, tile_stride=32): |
|
latents = self.vae_encoder(image, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride) |
|
return latents |
|
|
|
|
|
def decode_image(self, latent, tiled=False, tile_size=64, tile_stride=32): |
|
image = self.vae_decoder(latent.to(self.device), tiled=tiled, tile_size=tile_size, tile_stride=tile_stride) |
|
image = self.vae_output_to_image(image) |
|
return image |
|
|
|
|
|
def encode_prompt(self, prompt, clip_skip=1, clip_skip_2=2, positive=True): |
|
add_prompt_emb, prompt_emb = self.prompter.encode_prompt( |
|
prompt, |
|
clip_skip=clip_skip, clip_skip_2=clip_skip_2, |
|
device=self.device, |
|
positive=positive, |
|
) |
|
return {"encoder_hidden_states": prompt_emb, "add_text_embeds": add_prompt_emb} |
|
|
|
|
|
def prepare_extra_input(self, latents=None): |
|
height, width = latents.shape[2] * 8, latents.shape[3] * 8 |
|
add_time_id = torch.tensor([height, width, 0, 0, height, width], device=self.device).repeat(latents.shape[0]) |
|
return {"add_time_id": add_time_id} |
|
|
|
|
|
@torch.no_grad() |
|
def __call__( |
|
self, |
|
prompt, |
|
local_prompts=[], |
|
masks=[], |
|
mask_scales=[], |
|
negative_prompt="", |
|
cfg_scale=7.5, |
|
clip_skip=1, |
|
clip_skip_2=2, |
|
input_image=None, |
|
ipadapter_images=None, |
|
ipadapter_scale=1.0, |
|
ipadapter_use_instant_style=False, |
|
controlnet_image=None, |
|
denoising_strength=1.0, |
|
height=1024, |
|
width=1024, |
|
num_inference_steps=20, |
|
tiled=False, |
|
tile_size=64, |
|
tile_stride=32, |
|
seed=None, |
|
progress_bar_cmd=tqdm, |
|
progress_bar_st=None, |
|
): |
|
height, width = self.check_resize_height_width(height, width) |
|
|
|
|
|
tiler_kwargs = {"tiled": tiled, "tile_size": tile_size, "tile_stride": tile_stride} |
|
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps, denoising_strength) |
|
|
|
|
|
if input_image is not None: |
|
self.load_models_to_device(['vae_encoder']) |
|
image = self.preprocess_image(input_image).to(device=self.device, dtype=self.torch_dtype) |
|
latents = self.encode_image(image, **tiler_kwargs) |
|
noise = self.generate_noise((1, 4, height//8, width//8), seed=seed, device=self.device, dtype=self.torch_dtype) |
|
latents = self.scheduler.add_noise(latents, noise, timestep=self.scheduler.timesteps[0]) |
|
else: |
|
latents = self.generate_noise((1, 4, height//8, width//8), seed=seed, device=self.device, dtype=self.torch_dtype) |
|
|
|
|
|
self.load_models_to_device(['text_encoder', 'text_encoder_2', 'text_encoder_kolors']) |
|
prompt_emb_posi = self.encode_prompt(prompt, clip_skip=clip_skip, clip_skip_2=clip_skip_2, positive=True) |
|
prompt_emb_nega = self.encode_prompt(negative_prompt, clip_skip=clip_skip, clip_skip_2=clip_skip_2, positive=False) |
|
prompt_emb_locals = [self.encode_prompt(prompt_local, clip_skip=clip_skip, clip_skip_2=clip_skip_2, positive=True) for prompt_local in local_prompts] |
|
|
|
|
|
if ipadapter_images is not None: |
|
if ipadapter_use_instant_style: |
|
self.ipadapter.set_less_adapter() |
|
else: |
|
self.ipadapter.set_full_adapter() |
|
self.load_models_to_device(['ipadapter_image_encoder']) |
|
ipadapter_image_encoding = self.ipadapter_image_encoder(ipadapter_images) |
|
self.load_models_to_device(['ipadapter']) |
|
ipadapter_kwargs_list_posi = {"ipadapter_kwargs_list": self.ipadapter(ipadapter_image_encoding, scale=ipadapter_scale)} |
|
ipadapter_kwargs_list_nega = {"ipadapter_kwargs_list": self.ipadapter(torch.zeros_like(ipadapter_image_encoding))} |
|
else: |
|
ipadapter_kwargs_list_posi, ipadapter_kwargs_list_nega = {"ipadapter_kwargs_list": {}}, {"ipadapter_kwargs_list": {}} |
|
|
|
|
|
if controlnet_image is not None: |
|
self.load_models_to_device(['controlnet']) |
|
controlnet_image = self.controlnet.process_image(controlnet_image).to(device=self.device, dtype=self.torch_dtype) |
|
controlnet_image = controlnet_image.unsqueeze(1) |
|
controlnet_kwargs = {"controlnet_frames": controlnet_image} |
|
else: |
|
controlnet_kwargs = {"controlnet_frames": None} |
|
|
|
|
|
extra_input = self.prepare_extra_input(latents) |
|
|
|
|
|
self.load_models_to_device(['controlnet', 'unet']) |
|
for progress_id, timestep in enumerate(progress_bar_cmd(self.scheduler.timesteps)): |
|
timestep = timestep.unsqueeze(0).to(self.device) |
|
|
|
|
|
inference_callback = lambda prompt_emb_posi: lets_dance_xl( |
|
self.unet, motion_modules=None, controlnet=self.controlnet, |
|
sample=latents, timestep=timestep, **extra_input, |
|
**prompt_emb_posi, **controlnet_kwargs, **tiler_kwargs, **ipadapter_kwargs_list_posi, |
|
device=self.device, |
|
) |
|
noise_pred_posi = self.control_noise_via_local_prompts(prompt_emb_posi, prompt_emb_locals, masks, mask_scales, inference_callback) |
|
|
|
if cfg_scale != 1.0: |
|
noise_pred_nega = lets_dance_xl( |
|
self.unet, motion_modules=None, controlnet=self.controlnet, |
|
sample=latents, timestep=timestep, **extra_input, |
|
**prompt_emb_nega, **controlnet_kwargs, **tiler_kwargs, **ipadapter_kwargs_list_nega, |
|
device=self.device, |
|
) |
|
noise_pred = noise_pred_nega + cfg_scale * (noise_pred_posi - noise_pred_nega) |
|
else: |
|
noise_pred = noise_pred_posi |
|
|
|
|
|
latents = self.scheduler.step(noise_pred, timestep, latents) |
|
|
|
|
|
if progress_bar_st is not None: |
|
progress_bar_st.progress(progress_id / len(self.scheduler.timesteps)) |
|
|
|
|
|
self.load_models_to_device(['vae_decoder']) |
|
image = self.decode_image(latents, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride) |
|
|
|
|
|
self.load_models_to_device([]) |
|
return image |
|
|