|
from ..models import SDXLTextEncoder, SDXLTextEncoder2, SDXLUNet, SDXLVAEDecoder, SDXLVAEEncoder, SDXLIpAdapter, IpAdapterXLCLIPImageEmbedder, SDXLMotionModel |
|
from ..models.kolors_text_encoder import ChatGLMModel |
|
from ..models.model_manager import ModelManager |
|
from ..controlnets import MultiControlNetManager, ControlNetUnit, ControlNetConfigUnit, Annotator |
|
from ..prompters import SDXLPrompter, KolorsPrompter |
|
from ..schedulers import EnhancedDDIMScheduler |
|
from .sdxl_image import SDXLImagePipeline |
|
from .dancer import lets_dance_xl |
|
from typing import List |
|
import torch |
|
from tqdm import tqdm |
|
|
|
|
|
|
|
class SDXLVideoPipeline(SDXLImagePipeline): |
|
|
|
def __init__(self, device="cuda", torch_dtype=torch.float16, use_original_animatediff=True): |
|
super().__init__(device=device, torch_dtype=torch_dtype) |
|
self.scheduler = EnhancedDDIMScheduler(beta_schedule="linear" if use_original_animatediff else "scaled_linear") |
|
self.prompter = SDXLPrompter() |
|
|
|
self.text_encoder: SDXLTextEncoder = None |
|
self.text_encoder_2: SDXLTextEncoder2 = None |
|
self.text_encoder_kolors: ChatGLMModel = None |
|
self.unet: SDXLUNet = None |
|
self.vae_decoder: SDXLVAEDecoder = None |
|
self.vae_encoder: SDXLVAEEncoder = None |
|
|
|
self.ipadapter_image_encoder: IpAdapterXLCLIPImageEmbedder = None |
|
self.ipadapter: SDXLIpAdapter = None |
|
self.motion_modules: SDXLMotionModel = None |
|
|
|
|
|
def fetch_models(self, model_manager: ModelManager, controlnet_config_units: List[ControlNetConfigUnit]=[], prompt_refiner_classes=[]): |
|
|
|
self.text_encoder = model_manager.fetch_model("sdxl_text_encoder") |
|
self.text_encoder_2 = model_manager.fetch_model("sdxl_text_encoder_2") |
|
self.text_encoder_kolors = model_manager.fetch_model("kolors_text_encoder") |
|
self.unet = model_manager.fetch_model("sdxl_unet") |
|
self.vae_decoder = model_manager.fetch_model("sdxl_vae_decoder") |
|
self.vae_encoder = model_manager.fetch_model("sdxl_vae_encoder") |
|
self.prompter.fetch_models(self.text_encoder) |
|
self.prompter.load_prompt_refiners(model_manager, prompt_refiner_classes) |
|
|
|
|
|
|
|
|
|
self.ipadapter = model_manager.fetch_model("sdxl_ipadapter") |
|
self.ipadapter_image_encoder = model_manager.fetch_model("sdxl_ipadapter_clip_image_encoder") |
|
|
|
|
|
self.motion_modules = model_manager.fetch_model("sdxl_motion_modules") |
|
if self.motion_modules is None: |
|
self.scheduler = EnhancedDDIMScheduler(beta_schedule="scaled_linear") |
|
|
|
|
|
if self.text_encoder_kolors is not None: |
|
print("Switch to Kolors. The prompter will be replaced.") |
|
self.prompter = KolorsPrompter() |
|
self.prompter.fetch_models(self.text_encoder_kolors) |
|
|
|
if self.motion_modules is None: |
|
self.scheduler = EnhancedDDIMScheduler(beta_end=0.014, num_train_timesteps=1100) |
|
else: |
|
self.prompter.fetch_models(self.text_encoder, self.text_encoder_2) |
|
|
|
|
|
@staticmethod |
|
def from_model_manager(model_manager: ModelManager, controlnet_config_units: List[ControlNetConfigUnit]=[], prompt_refiner_classes=[]): |
|
pipe = SDXLVideoPipeline( |
|
device=model_manager.device, |
|
torch_dtype=model_manager.torch_dtype, |
|
) |
|
pipe.fetch_models(model_manager, controlnet_config_units, prompt_refiner_classes) |
|
return pipe |
|
|
|
|
|
def decode_video(self, latents, tiled=False, tile_size=64, tile_stride=32): |
|
images = [ |
|
self.decode_image(latents[frame_id: frame_id+1], tiled=tiled, tile_size=tile_size, tile_stride=tile_stride) |
|
for frame_id in range(latents.shape[0]) |
|
] |
|
return images |
|
|
|
|
|
def encode_video(self, processed_images, tiled=False, tile_size=64, tile_stride=32): |
|
latents = [] |
|
for image in processed_images: |
|
image = self.preprocess_image(image).to(device=self.device, dtype=self.torch_dtype) |
|
latent = self.encode_image(image, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride) |
|
latents.append(latent.cpu()) |
|
latents = torch.concat(latents, dim=0) |
|
return latents |
|
|
|
|
|
@torch.no_grad() |
|
def __call__( |
|
self, |
|
prompt, |
|
negative_prompt="", |
|
cfg_scale=7.5, |
|
clip_skip=1, |
|
num_frames=None, |
|
input_frames=None, |
|
ipadapter_images=None, |
|
ipadapter_scale=1.0, |
|
ipadapter_use_instant_style=False, |
|
controlnet_frames=None, |
|
denoising_strength=1.0, |
|
height=512, |
|
width=512, |
|
num_inference_steps=20, |
|
animatediff_batch_size = 16, |
|
animatediff_stride = 8, |
|
unet_batch_size = 1, |
|
controlnet_batch_size = 1, |
|
cross_frame_attention = False, |
|
smoother=None, |
|
smoother_progress_ids=[], |
|
tiled=False, |
|
tile_size=64, |
|
tile_stride=32, |
|
seed=None, |
|
progress_bar_cmd=tqdm, |
|
progress_bar_st=None, |
|
): |
|
height, width = self.check_resize_height_width(height, width) |
|
|
|
|
|
tiler_kwargs = {"tiled": tiled, "tile_size": tile_size, "tile_stride": tile_stride} |
|
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps, denoising_strength) |
|
|
|
|
|
if self.motion_modules is None: |
|
noise = self.generate_noise((1, 4, height//8, width//8), seed=seed, device="cpu", dtype=self.torch_dtype).repeat(num_frames, 1, 1, 1) |
|
else: |
|
noise = self.generate_noise((num_frames, 4, height//8, width//8), seed=seed, device="cpu", dtype=self.torch_dtype) |
|
if input_frames is None or denoising_strength == 1.0: |
|
latents = noise |
|
else: |
|
latents = self.encode_video(input_frames, **tiler_kwargs) |
|
latents = self.scheduler.add_noise(latents, noise, timestep=self.scheduler.timesteps[0]) |
|
latents = latents.to(self.device) |
|
|
|
|
|
prompt_emb_posi = self.encode_prompt(prompt, clip_skip=clip_skip, positive=True) |
|
prompt_emb_nega = self.encode_prompt(negative_prompt, clip_skip=clip_skip, positive=False) |
|
|
|
|
|
if ipadapter_images is not None: |
|
if ipadapter_use_instant_style: |
|
self.ipadapter.set_less_adapter() |
|
else: |
|
self.ipadapter.set_full_adapter() |
|
ipadapter_image_encoding = self.ipadapter_image_encoder(ipadapter_images) |
|
ipadapter_kwargs_list_posi = {"ipadapter_kwargs_list": self.ipadapter(ipadapter_image_encoding, scale=ipadapter_scale)} |
|
ipadapter_kwargs_list_nega = {"ipadapter_kwargs_list": self.ipadapter(torch.zeros_like(ipadapter_image_encoding))} |
|
else: |
|
ipadapter_kwargs_list_posi, ipadapter_kwargs_list_nega = {"ipadapter_kwargs_list": {}}, {"ipadapter_kwargs_list": {}} |
|
|
|
|
|
if controlnet_frames is not None: |
|
if isinstance(controlnet_frames[0], list): |
|
controlnet_frames_ = [] |
|
for processor_id in range(len(controlnet_frames)): |
|
controlnet_frames_.append( |
|
torch.stack([ |
|
self.controlnet.process_image(controlnet_frame, processor_id=processor_id).to(self.torch_dtype) |
|
for controlnet_frame in progress_bar_cmd(controlnet_frames[processor_id]) |
|
], dim=1) |
|
) |
|
controlnet_frames = torch.concat(controlnet_frames_, dim=0) |
|
else: |
|
controlnet_frames = torch.stack([ |
|
self.controlnet.process_image(controlnet_frame).to(self.torch_dtype) |
|
for controlnet_frame in progress_bar_cmd(controlnet_frames) |
|
], dim=1) |
|
controlnet_kwargs = {"controlnet_frames": controlnet_frames} |
|
else: |
|
controlnet_kwargs = {"controlnet_frames": None} |
|
|
|
|
|
extra_input = self.prepare_extra_input(latents) |
|
|
|
|
|
for progress_id, timestep in enumerate(progress_bar_cmd(self.scheduler.timesteps)): |
|
timestep = timestep.unsqueeze(0).to(self.device) |
|
|
|
|
|
noise_pred_posi = lets_dance_xl( |
|
self.unet, motion_modules=self.motion_modules, controlnet=None, |
|
sample=latents, timestep=timestep, |
|
**prompt_emb_posi, **controlnet_kwargs, **ipadapter_kwargs_list_posi, **extra_input, **tiler_kwargs, |
|
device=self.device, |
|
) |
|
noise_pred_nega = lets_dance_xl( |
|
self.unet, motion_modules=self.motion_modules, controlnet=None, |
|
sample=latents, timestep=timestep, |
|
**prompt_emb_nega, **controlnet_kwargs, **ipadapter_kwargs_list_nega, **extra_input, **tiler_kwargs, |
|
device=self.device, |
|
) |
|
noise_pred = noise_pred_nega + cfg_scale * (noise_pred_posi - noise_pred_nega) |
|
|
|
|
|
if smoother is not None and progress_id in smoother_progress_ids: |
|
rendered_frames = self.scheduler.step(noise_pred, timestep, latents, to_final=True) |
|
rendered_frames = self.decode_video(rendered_frames) |
|
rendered_frames = smoother(rendered_frames, original_frames=input_frames) |
|
target_latents = self.encode_video(rendered_frames) |
|
noise_pred = self.scheduler.return_to_timestep(timestep, latents, target_latents) |
|
latents = self.scheduler.step(noise_pred, timestep, latents) |
|
|
|
|
|
if progress_bar_st is not None: |
|
progress_bar_st.progress(progress_id / len(self.scheduler.timesteps)) |
|
|
|
|
|
output_frames = self.decode_video(latents, **tiler_kwargs) |
|
|
|
|
|
if smoother is not None and (num_inference_steps in smoother_progress_ids or -1 in smoother_progress_ids): |
|
output_frames = smoother(output_frames, original_frames=input_frames) |
|
|
|
return output_frames |
|
|