|
from ..models import ModelManager |
|
from ..models.hunyuan_dit_text_encoder import HunyuanDiTCLIPTextEncoder |
|
from ..models.stepvideo_text_encoder import STEP1TextEncoder |
|
from ..models.stepvideo_dit import StepVideoModel |
|
from ..models.stepvideo_vae import StepVideoVAE |
|
from ..schedulers.flow_match import FlowMatchScheduler |
|
from .base import BasePipeline |
|
from ..prompters import StepVideoPrompter |
|
import torch |
|
from einops import rearrange |
|
import numpy as np |
|
from PIL import Image |
|
from ..vram_management import enable_vram_management, AutoWrappedModule, AutoWrappedLinear |
|
from transformers.models.bert.modeling_bert import BertEmbeddings |
|
from ..models.stepvideo_dit import RMSNorm |
|
from ..models.stepvideo_vae import CausalConv, CausalConvAfterNorm, Upsample2D, BaseGroupNorm |
|
|
|
|
|
|
|
class StepVideoPipeline(BasePipeline): |
|
|
|
def __init__(self, device="cuda", torch_dtype=torch.float16): |
|
super().__init__(device=device, torch_dtype=torch_dtype) |
|
self.scheduler = FlowMatchScheduler(sigma_min=0.0, extra_one_step=True, shift=13.0, reverse_sigmas=True, num_train_timesteps=1) |
|
self.prompter = StepVideoPrompter() |
|
self.text_encoder_1: HunyuanDiTCLIPTextEncoder = None |
|
self.text_encoder_2: STEP1TextEncoder = None |
|
self.dit: StepVideoModel = None |
|
self.vae: StepVideoVAE = None |
|
self.model_names = ['text_encoder_1', 'text_encoder_2', 'dit', 'vae'] |
|
|
|
|
|
def enable_vram_management(self, num_persistent_param_in_dit=None): |
|
dtype = next(iter(self.text_encoder_1.parameters())).dtype |
|
enable_vram_management( |
|
self.text_encoder_1, |
|
module_map = { |
|
torch.nn.Linear: AutoWrappedLinear, |
|
BertEmbeddings: AutoWrappedModule, |
|
torch.nn.LayerNorm: AutoWrappedModule, |
|
}, |
|
module_config = dict( |
|
offload_dtype=dtype, |
|
offload_device="cpu", |
|
onload_dtype=dtype, |
|
onload_device="cpu", |
|
computation_dtype=torch.float32, |
|
computation_device=self.device, |
|
), |
|
) |
|
dtype = next(iter(self.text_encoder_2.parameters())).dtype |
|
enable_vram_management( |
|
self.text_encoder_2, |
|
module_map = { |
|
torch.nn.Linear: AutoWrappedLinear, |
|
RMSNorm: AutoWrappedModule, |
|
torch.nn.Embedding: AutoWrappedModule, |
|
}, |
|
module_config = dict( |
|
offload_dtype=dtype, |
|
offload_device="cpu", |
|
onload_dtype=dtype, |
|
onload_device="cpu", |
|
computation_dtype=self.torch_dtype, |
|
computation_device=self.device, |
|
), |
|
) |
|
dtype = next(iter(self.dit.parameters())).dtype |
|
enable_vram_management( |
|
self.dit, |
|
module_map = { |
|
torch.nn.Linear: AutoWrappedLinear, |
|
torch.nn.Conv2d: AutoWrappedModule, |
|
torch.nn.LayerNorm: AutoWrappedModule, |
|
RMSNorm: AutoWrappedModule, |
|
}, |
|
module_config = dict( |
|
offload_dtype=dtype, |
|
offload_device="cpu", |
|
onload_dtype=dtype, |
|
onload_device=self.device, |
|
computation_dtype=self.torch_dtype, |
|
computation_device=self.device, |
|
), |
|
max_num_param=num_persistent_param_in_dit, |
|
overflow_module_config = dict( |
|
offload_dtype=dtype, |
|
offload_device="cpu", |
|
onload_dtype=dtype, |
|
onload_device="cpu", |
|
computation_dtype=self.torch_dtype, |
|
computation_device=self.device, |
|
), |
|
) |
|
dtype = next(iter(self.vae.parameters())).dtype |
|
enable_vram_management( |
|
self.vae, |
|
module_map = { |
|
torch.nn.Linear: AutoWrappedLinear, |
|
torch.nn.Conv3d: AutoWrappedModule, |
|
CausalConv: AutoWrappedModule, |
|
CausalConvAfterNorm: AutoWrappedModule, |
|
Upsample2D: AutoWrappedModule, |
|
BaseGroupNorm: AutoWrappedModule, |
|
}, |
|
module_config = dict( |
|
offload_dtype=dtype, |
|
offload_device="cpu", |
|
onload_dtype=dtype, |
|
onload_device="cpu", |
|
computation_dtype=self.torch_dtype, |
|
computation_device=self.device, |
|
), |
|
) |
|
self.enable_cpu_offload() |
|
|
|
|
|
def fetch_models(self, model_manager: ModelManager): |
|
self.text_encoder_1 = model_manager.fetch_model("hunyuan_dit_clip_text_encoder") |
|
self.text_encoder_2 = model_manager.fetch_model("stepvideo_text_encoder_2") |
|
self.dit = model_manager.fetch_model("stepvideo_dit") |
|
self.vae = model_manager.fetch_model("stepvideo_vae") |
|
self.prompter.fetch_models(self.text_encoder_1, self.text_encoder_2) |
|
|
|
|
|
@staticmethod |
|
def from_model_manager(model_manager: ModelManager, torch_dtype=None, device=None): |
|
if device is None: device = model_manager.device |
|
if torch_dtype is None: torch_dtype = model_manager.torch_dtype |
|
pipe = StepVideoPipeline(device=device, torch_dtype=torch_dtype) |
|
pipe.fetch_models(model_manager) |
|
return pipe |
|
|
|
|
|
def encode_prompt(self, prompt, positive=True): |
|
clip_embeds, llm_embeds, llm_mask = self.prompter.encode_prompt(prompt, device=self.device, positive=positive) |
|
clip_embeds = clip_embeds.to(dtype=self.torch_dtype, device=self.device) |
|
llm_embeds = llm_embeds.to(dtype=self.torch_dtype, device=self.device) |
|
llm_mask = llm_mask.to(dtype=self.torch_dtype, device=self.device) |
|
return {"encoder_hidden_states_2": clip_embeds, "encoder_hidden_states": llm_embeds, "encoder_attention_mask": llm_mask} |
|
|
|
|
|
def tensor2video(self, frames): |
|
frames = rearrange(frames, "C T H W -> T H W C") |
|
frames = ((frames.float() + 1) * 127.5).clip(0, 255).cpu().numpy().astype(np.uint8) |
|
frames = [Image.fromarray(frame) for frame in frames] |
|
return frames |
|
|
|
|
|
@torch.no_grad() |
|
def __call__( |
|
self, |
|
prompt, |
|
negative_prompt="", |
|
input_video=None, |
|
denoising_strength=1.0, |
|
seed=None, |
|
rand_device="cpu", |
|
height=544, |
|
width=992, |
|
num_frames=204, |
|
cfg_scale=9.0, |
|
num_inference_steps=30, |
|
tiled=True, |
|
tile_size=(34, 34), |
|
tile_stride=(16, 16), |
|
smooth_scale=0.6, |
|
progress_bar_cmd=lambda x: x, |
|
progress_bar_st=None, |
|
): |
|
|
|
tiler_kwargs = {"tiled": tiled, "tile_size": tile_size, "tile_stride": tile_stride} |
|
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps, denoising_strength) |
|
|
|
|
|
latents = self.generate_noise((1, max(num_frames//17*3, 1), 64, height//16, width//16), seed=seed, device=rand_device, dtype=self.torch_dtype).to(self.device) |
|
|
|
|
|
self.load_models_to_device(["text_encoder_1", "text_encoder_2"]) |
|
prompt_emb_posi = self.encode_prompt(prompt, positive=True) |
|
if cfg_scale != 1.0: |
|
prompt_emb_nega = self.encode_prompt(negative_prompt, positive=False) |
|
|
|
|
|
self.load_models_to_device(["dit"]) |
|
for progress_id, timestep in enumerate(progress_bar_cmd(self.scheduler.timesteps)): |
|
timestep = timestep.unsqueeze(0).to(dtype=self.torch_dtype, device=self.device) |
|
print(f"Step {progress_id + 1} / {len(self.scheduler.timesteps)}") |
|
|
|
|
|
noise_pred_posi = self.dit(latents, timestep=timestep, **prompt_emb_posi) |
|
if cfg_scale != 1.0: |
|
noise_pred_nega = self.dit(latents, timestep=timestep, **prompt_emb_nega) |
|
noise_pred = noise_pred_nega + cfg_scale * (noise_pred_posi - noise_pred_nega) |
|
else: |
|
noise_pred = noise_pred_posi |
|
|
|
|
|
latents = self.scheduler.step(noise_pred, self.scheduler.timesteps[progress_id], latents) |
|
|
|
|
|
self.load_models_to_device(['vae']) |
|
frames = self.vae.decode(latents, device=self.device, smooth_scale=smooth_scale, **tiler_kwargs) |
|
self.load_models_to_device([]) |
|
frames = self.tensor2video(frames[0]) |
|
|
|
return frames |
|
|