|
from PIL import Image |
|
import cupy as cp |
|
import numpy as np |
|
from tqdm import tqdm |
|
from ..extensions.FastBlend.patch_match import PyramidPatchMatcher |
|
from ..extensions.FastBlend.runners.fast import TableManager |
|
from .base import VideoProcessor |
|
|
|
|
|
class FastBlendSmoother(VideoProcessor): |
|
def __init__( |
|
self, |
|
inference_mode="fast", batch_size=8, window_size=60, |
|
minimum_patch_size=5, threads_per_block=8, num_iter=5, gpu_id=0, guide_weight=10.0, initialize="identity", tracking_window_size=0 |
|
): |
|
self.inference_mode = inference_mode |
|
self.batch_size = batch_size |
|
self.window_size = window_size |
|
self.ebsynth_config = { |
|
"minimum_patch_size": minimum_patch_size, |
|
"threads_per_block": threads_per_block, |
|
"num_iter": num_iter, |
|
"gpu_id": gpu_id, |
|
"guide_weight": guide_weight, |
|
"initialize": initialize, |
|
"tracking_window_size": tracking_window_size |
|
} |
|
|
|
@staticmethod |
|
def from_model_manager(model_manager, **kwargs): |
|
|
|
return FastBlendSmoother(**kwargs) |
|
|
|
def inference_fast(self, frames_guide, frames_style): |
|
table_manager = TableManager() |
|
patch_match_engine = PyramidPatchMatcher( |
|
image_height=frames_style[0].shape[0], |
|
image_width=frames_style[0].shape[1], |
|
channel=3, |
|
**self.ebsynth_config |
|
) |
|
|
|
table_l = table_manager.build_remapping_table(frames_guide, frames_style, patch_match_engine, self.batch_size, desc="Fast Mode Step 1/4") |
|
table_l = table_manager.remapping_table_to_blending_table(table_l) |
|
table_l = table_manager.process_window_sum(frames_guide, table_l, patch_match_engine, self.window_size, self.batch_size, desc="Fast Mode Step 2/4") |
|
|
|
table_r = table_manager.build_remapping_table(frames_guide[::-1], frames_style[::-1], patch_match_engine, self.batch_size, desc="Fast Mode Step 3/4") |
|
table_r = table_manager.remapping_table_to_blending_table(table_r) |
|
table_r = table_manager.process_window_sum(frames_guide[::-1], table_r, patch_match_engine, self.window_size, self.batch_size, desc="Fast Mode Step 4/4")[::-1] |
|
|
|
frames = [] |
|
for (frame_l, weight_l), frame_m, (frame_r, weight_r) in zip(table_l, frames_style, table_r): |
|
weight_m = -1 |
|
weight = weight_l + weight_m + weight_r |
|
frame = frame_l * (weight_l / weight) + frame_m * (weight_m / weight) + frame_r * (weight_r / weight) |
|
frames.append(frame) |
|
frames = [frame.clip(0, 255).astype("uint8") for frame in frames] |
|
frames = [Image.fromarray(frame) for frame in frames] |
|
return frames |
|
|
|
def inference_balanced(self, frames_guide, frames_style): |
|
patch_match_engine = PyramidPatchMatcher( |
|
image_height=frames_style[0].shape[0], |
|
image_width=frames_style[0].shape[1], |
|
channel=3, |
|
**self.ebsynth_config |
|
) |
|
output_frames = [] |
|
|
|
n = len(frames_style) |
|
tasks = [] |
|
for target in range(n): |
|
for source in range(target - self.window_size, target + self.window_size + 1): |
|
if source >= 0 and source < n and source != target: |
|
tasks.append((source, target)) |
|
|
|
frames = [(None, 1) for i in range(n)] |
|
for batch_id in tqdm(range(0, len(tasks), self.batch_size), desc="Balanced Mode"): |
|
tasks_batch = tasks[batch_id: min(batch_id+self.batch_size, len(tasks))] |
|
source_guide = np.stack([frames_guide[source] for source, target in tasks_batch]) |
|
target_guide = np.stack([frames_guide[target] for source, target in tasks_batch]) |
|
source_style = np.stack([frames_style[source] for source, target in tasks_batch]) |
|
_, target_style = patch_match_engine.estimate_nnf(source_guide, target_guide, source_style) |
|
for (source, target), result in zip(tasks_batch, target_style): |
|
frame, weight = frames[target] |
|
if frame is None: |
|
frame = frames_style[target] |
|
frames[target] = ( |
|
frame * (weight / (weight + 1)) + result / (weight + 1), |
|
weight + 1 |
|
) |
|
if weight + 1 == min(n, target + self.window_size + 1) - max(0, target - self.window_size): |
|
frame = frame.clip(0, 255).astype("uint8") |
|
output_frames.append(Image.fromarray(frame)) |
|
frames[target] = (None, 1) |
|
return output_frames |
|
|
|
def inference_accurate(self, frames_guide, frames_style): |
|
patch_match_engine = PyramidPatchMatcher( |
|
image_height=frames_style[0].shape[0], |
|
image_width=frames_style[0].shape[1], |
|
channel=3, |
|
use_mean_target_style=True, |
|
**self.ebsynth_config |
|
) |
|
output_frames = [] |
|
|
|
n = len(frames_style) |
|
for target in tqdm(range(n), desc="Accurate Mode"): |
|
l, r = max(target - self.window_size, 0), min(target + self.window_size + 1, n) |
|
remapped_frames = [] |
|
for i in range(l, r, self.batch_size): |
|
j = min(i + self.batch_size, r) |
|
source_guide = np.stack([frames_guide[source] for source in range(i, j)]) |
|
target_guide = np.stack([frames_guide[target]] * (j - i)) |
|
source_style = np.stack([frames_style[source] for source in range(i, j)]) |
|
_, target_style = patch_match_engine.estimate_nnf(source_guide, target_guide, source_style) |
|
remapped_frames.append(target_style) |
|
frame = np.concatenate(remapped_frames, axis=0).mean(axis=0) |
|
frame = frame.clip(0, 255).astype("uint8") |
|
output_frames.append(Image.fromarray(frame)) |
|
return output_frames |
|
|
|
def release_vram(self): |
|
mempool = cp.get_default_memory_pool() |
|
pinned_mempool = cp.get_default_pinned_memory_pool() |
|
mempool.free_all_blocks() |
|
pinned_mempool.free_all_blocks() |
|
|
|
def __call__(self, rendered_frames, original_frames=None, **kwargs): |
|
rendered_frames = [np.array(frame) for frame in rendered_frames] |
|
original_frames = [np.array(frame) for frame in original_frames] |
|
if self.inference_mode == "fast": |
|
output_frames = self.inference_fast(original_frames, rendered_frames) |
|
elif self.inference_mode == "balanced": |
|
output_frames = self.inference_balanced(original_frames, rendered_frames) |
|
elif self.inference_mode == "accurate": |
|
output_frames = self.inference_accurate(original_frames, rendered_frames) |
|
else: |
|
raise ValueError("inference_mode must be fast, balanced or accurate") |
|
self.release_vram() |
|
return output_frames |
|
|