|
import torch |
|
import numpy as np |
|
from PIL import Image |
|
from .base import VideoProcessor |
|
|
|
|
|
class RIFESmoother(VideoProcessor): |
|
def __init__(self, model, device="cuda", scale=1.0, batch_size=4, interpolate=True): |
|
self.model = model |
|
self.device = device |
|
|
|
|
|
self.torch_dtype = torch.float32 |
|
|
|
|
|
self.scale = scale |
|
self.batch_size = batch_size |
|
self.interpolate = interpolate |
|
|
|
@staticmethod |
|
def from_model_manager(model_manager, **kwargs): |
|
return RIFESmoother(model_manager.RIFE, device=model_manager.device, **kwargs) |
|
|
|
def process_image(self, image): |
|
width, height = image.size |
|
if width % 32 != 0 or height % 32 != 0: |
|
width = (width + 31) // 32 |
|
height = (height + 31) // 32 |
|
image = image.resize((width, height)) |
|
image = torch.Tensor(np.array(image, dtype=np.float32)[:, :, [2,1,0]] / 255).permute(2, 0, 1) |
|
return image |
|
|
|
def process_images(self, images): |
|
images = [self.process_image(image) for image in images] |
|
images = torch.stack(images) |
|
return images |
|
|
|
def decode_images(self, images): |
|
images = (images[:, [2,1,0]].permute(0, 2, 3, 1) * 255).clip(0, 255).numpy().astype(np.uint8) |
|
images = [Image.fromarray(image) for image in images] |
|
return images |
|
|
|
def process_tensors(self, input_tensor, scale=1.0, batch_size=4): |
|
output_tensor = [] |
|
for batch_id in range(0, input_tensor.shape[0], batch_size): |
|
batch_id_ = min(batch_id + batch_size, input_tensor.shape[0]) |
|
batch_input_tensor = input_tensor[batch_id: batch_id_] |
|
batch_input_tensor = batch_input_tensor.to(device=self.device, dtype=self.torch_dtype) |
|
flow, mask, merged = self.model(batch_input_tensor, [4/scale, 2/scale, 1/scale]) |
|
output_tensor.append(merged[2].cpu()) |
|
output_tensor = torch.concat(output_tensor, dim=0) |
|
return output_tensor |
|
|
|
@torch.no_grad() |
|
def __call__(self, rendered_frames, **kwargs): |
|
|
|
processed_images = self.process_images(rendered_frames) |
|
|
|
|
|
input_tensor = torch.cat((processed_images[:-2], processed_images[2:]), dim=1) |
|
|
|
|
|
output_tensor = self.process_tensors(input_tensor, scale=self.scale, batch_size=self.batch_size) |
|
|
|
if self.interpolate: |
|
|
|
input_tensor = torch.cat((processed_images[1:-1], output_tensor), dim=1) |
|
output_tensor = self.process_tensors(input_tensor, scale=self.scale, batch_size=self.batch_size) |
|
processed_images[1:-1] = output_tensor |
|
else: |
|
processed_images[1:-1] = (processed_images[1:-1] + output_tensor) / 2 |
|
|
|
|
|
output_images = self.decode_images(processed_images) |
|
if output_images[0].size != rendered_frames[0].size: |
|
output_images = [image.resize(rendered_frames[0].size) for image in output_images] |
|
return output_images |
|
|