|
from .base_prompter import BasePrompter |
|
from ..models.flux_text_encoder import FluxTextEncoder2 |
|
from transformers import T5TokenizerFast |
|
import os |
|
|
|
|
|
class CogPrompter(BasePrompter): |
|
def __init__( |
|
self, |
|
tokenizer_path=None |
|
): |
|
if tokenizer_path is None: |
|
base_path = os.path.dirname(os.path.dirname(__file__)) |
|
tokenizer_path = os.path.join(base_path, "tokenizer_configs/cog/tokenizer") |
|
super().__init__() |
|
self.tokenizer = T5TokenizerFast.from_pretrained(tokenizer_path) |
|
self.text_encoder: FluxTextEncoder2 = None |
|
|
|
|
|
def fetch_models(self, text_encoder: FluxTextEncoder2 = None): |
|
self.text_encoder = text_encoder |
|
|
|
|
|
def encode_prompt_using_t5(self, prompt, text_encoder, tokenizer, max_length, device): |
|
input_ids = tokenizer( |
|
prompt, |
|
return_tensors="pt", |
|
padding="max_length", |
|
max_length=max_length, |
|
truncation=True, |
|
).input_ids.to(device) |
|
prompt_emb = text_encoder(input_ids) |
|
prompt_emb = prompt_emb.reshape((1, prompt_emb.shape[0]*prompt_emb.shape[1], -1)) |
|
|
|
return prompt_emb |
|
|
|
|
|
def encode_prompt( |
|
self, |
|
prompt, |
|
positive=True, |
|
device="cuda" |
|
): |
|
prompt = self.process_prompt(prompt, positive=positive) |
|
prompt_emb = self.encode_prompt_using_t5(prompt, self.text_encoder, self.tokenizer, 226, device) |
|
return prompt_emb |
|
|