|
from .base_prompter import BasePrompter |
|
from ..models.model_manager import ModelManager |
|
from ..models import SD3TextEncoder1, SD3TextEncoder2, SD3TextEncoder3 |
|
from transformers import CLIPTokenizer, T5TokenizerFast |
|
import os, torch |
|
|
|
|
|
class SD3Prompter(BasePrompter): |
|
def __init__( |
|
self, |
|
tokenizer_1_path=None, |
|
tokenizer_2_path=None, |
|
tokenizer_3_path=None |
|
): |
|
if tokenizer_1_path is None: |
|
base_path = os.path.dirname(os.path.dirname(__file__)) |
|
tokenizer_1_path = os.path.join(base_path, "tokenizer_configs/stable_diffusion_3/tokenizer_1") |
|
if tokenizer_2_path is None: |
|
base_path = os.path.dirname(os.path.dirname(__file__)) |
|
tokenizer_2_path = os.path.join(base_path, "tokenizer_configs/stable_diffusion_3/tokenizer_2") |
|
if tokenizer_3_path is None: |
|
base_path = os.path.dirname(os.path.dirname(__file__)) |
|
tokenizer_3_path = os.path.join(base_path, "tokenizer_configs/stable_diffusion_3/tokenizer_3") |
|
super().__init__() |
|
self.tokenizer_1 = CLIPTokenizer.from_pretrained(tokenizer_1_path) |
|
self.tokenizer_2 = CLIPTokenizer.from_pretrained(tokenizer_2_path) |
|
self.tokenizer_3 = T5TokenizerFast.from_pretrained(tokenizer_3_path) |
|
self.text_encoder_1: SD3TextEncoder1 = None |
|
self.text_encoder_2: SD3TextEncoder2 = None |
|
self.text_encoder_3: SD3TextEncoder3 = None |
|
|
|
|
|
def fetch_models(self, text_encoder_1: SD3TextEncoder1 = None, text_encoder_2: SD3TextEncoder2 = None, text_encoder_3: SD3TextEncoder3 = None): |
|
self.text_encoder_1 = text_encoder_1 |
|
self.text_encoder_2 = text_encoder_2 |
|
self.text_encoder_3 = text_encoder_3 |
|
|
|
|
|
def encode_prompt_using_clip(self, prompt, text_encoder, tokenizer, max_length, device): |
|
input_ids = tokenizer( |
|
prompt, |
|
return_tensors="pt", |
|
padding="max_length", |
|
max_length=max_length, |
|
truncation=True |
|
).input_ids.to(device) |
|
pooled_prompt_emb, prompt_emb = text_encoder(input_ids) |
|
return pooled_prompt_emb, prompt_emb |
|
|
|
|
|
def encode_prompt_using_t5(self, prompt, text_encoder, tokenizer, max_length, device): |
|
input_ids = tokenizer( |
|
prompt, |
|
return_tensors="pt", |
|
padding="max_length", |
|
max_length=max_length, |
|
truncation=True, |
|
add_special_tokens=True, |
|
).input_ids.to(device) |
|
prompt_emb = text_encoder(input_ids) |
|
prompt_emb = prompt_emb.reshape((1, prompt_emb.shape[0]*prompt_emb.shape[1], -1)) |
|
|
|
return prompt_emb |
|
|
|
|
|
def encode_prompt( |
|
self, |
|
prompt, |
|
positive=True, |
|
device="cuda", |
|
t5_sequence_length=77, |
|
): |
|
prompt = self.process_prompt(prompt, positive=positive) |
|
|
|
|
|
pooled_prompt_emb_1, prompt_emb_1 = self.encode_prompt_using_clip(prompt, self.text_encoder_1, self.tokenizer_1, 77, device) |
|
pooled_prompt_emb_2, prompt_emb_2 = self.encode_prompt_using_clip(prompt, self.text_encoder_2, self.tokenizer_2, 77, device) |
|
|
|
|
|
if self.text_encoder_3 is None: |
|
prompt_emb_3 = torch.zeros((prompt_emb_1.shape[0], t5_sequence_length, 4096), dtype=prompt_emb_1.dtype, device=device) |
|
else: |
|
prompt_emb_3 = self.encode_prompt_using_t5(prompt, self.text_encoder_3, self.tokenizer_3, t5_sequence_length, device) |
|
prompt_emb_3 = prompt_emb_3.to(prompt_emb_1.dtype) |
|
|
|
|
|
prompt_emb = torch.cat([ |
|
torch.nn.functional.pad(torch.cat([prompt_emb_1, prompt_emb_2], dim=-1), (0, 4096 - 768 - 1280)), |
|
prompt_emb_3 |
|
], dim=-2) |
|
pooled_prompt_emb = torch.cat([pooled_prompt_emb_1, pooled_prompt_emb_2], dim=-1) |
|
|
|
return prompt_emb, pooled_prompt_emb |
|
|