|
from .base_prompter import BasePrompter, tokenize_long_prompt |
|
from ..models.utils import load_state_dict, search_for_embeddings |
|
from ..models import SDTextEncoder |
|
from transformers import CLIPTokenizer |
|
import torch, os |
|
|
|
|
|
|
|
class SDPrompter(BasePrompter): |
|
def __init__(self, tokenizer_path=None): |
|
if tokenizer_path is None: |
|
base_path = os.path.dirname(os.path.dirname(__file__)) |
|
tokenizer_path = os.path.join(base_path, "tokenizer_configs/stable_diffusion/tokenizer") |
|
super().__init__() |
|
self.tokenizer = CLIPTokenizer.from_pretrained(tokenizer_path) |
|
self.text_encoder: SDTextEncoder = None |
|
self.textual_inversion_dict = {} |
|
self.keyword_dict = {} |
|
|
|
|
|
def fetch_models(self, text_encoder: SDTextEncoder = None): |
|
self.text_encoder = text_encoder |
|
|
|
|
|
def add_textual_inversions_to_model(self, textual_inversion_dict, text_encoder): |
|
dtype = next(iter(text_encoder.parameters())).dtype |
|
state_dict = text_encoder.token_embedding.state_dict() |
|
token_embeddings = [state_dict["weight"]] |
|
for keyword in textual_inversion_dict: |
|
_, embeddings = textual_inversion_dict[keyword] |
|
token_embeddings.append(embeddings.to(dtype=dtype, device=token_embeddings[0].device)) |
|
token_embeddings = torch.concat(token_embeddings, dim=0) |
|
state_dict["weight"] = token_embeddings |
|
text_encoder.token_embedding = torch.nn.Embedding(token_embeddings.shape[0], token_embeddings.shape[1]) |
|
text_encoder.token_embedding = text_encoder.token_embedding.to(dtype=dtype, device=token_embeddings[0].device) |
|
text_encoder.token_embedding.load_state_dict(state_dict) |
|
|
|
|
|
def add_textual_inversions_to_tokenizer(self, textual_inversion_dict, tokenizer): |
|
additional_tokens = [] |
|
for keyword in textual_inversion_dict: |
|
tokens, _ = textual_inversion_dict[keyword] |
|
additional_tokens += tokens |
|
self.keyword_dict[keyword] = " " + " ".join(tokens) + " " |
|
tokenizer.add_tokens(additional_tokens) |
|
|
|
|
|
def load_textual_inversions(self, model_paths): |
|
for model_path in model_paths: |
|
keyword = os.path.splitext(os.path.split(model_path)[-1])[0] |
|
state_dict = load_state_dict(model_path) |
|
|
|
|
|
for embeddings in search_for_embeddings(state_dict): |
|
if len(embeddings.shape) == 2 and embeddings.shape[1] == 768: |
|
tokens = [f"{keyword}_{i}" for i in range(embeddings.shape[0])] |
|
self.textual_inversion_dict[keyword] = (tokens, embeddings) |
|
|
|
self.add_textual_inversions_to_model(self.textual_inversion_dict, self.text_encoder) |
|
self.add_textual_inversions_to_tokenizer(self.textual_inversion_dict, self.tokenizer) |
|
|
|
|
|
def encode_prompt(self, prompt, clip_skip=1, device="cuda", positive=True): |
|
prompt = self.process_prompt(prompt, positive=positive) |
|
for keyword in self.keyword_dict: |
|
if keyword in prompt: |
|
print(f"Textual inversion {keyword} is enabled.") |
|
prompt = prompt.replace(keyword, self.keyword_dict[keyword]) |
|
input_ids = tokenize_long_prompt(self.tokenizer, prompt).to(device) |
|
prompt_emb = self.text_encoder(input_ids, clip_skip=clip_skip) |
|
prompt_emb = prompt_emb.reshape((1, prompt_emb.shape[0]*prompt_emb.shape[1], -1)) |
|
|
|
return prompt_emb |