|
import gradio as gr |
|
from diffsynth import ModelManager, SDImagePipeline, SDXLImagePipeline, SD3ImagePipeline, HunyuanDiTImagePipeline, FluxImagePipeline |
|
import os, torch |
|
from PIL import Image |
|
import numpy as np |
|
|
|
|
|
config = { |
|
"model_config": { |
|
"Stable Diffusion": { |
|
"model_folder": "models/stable_diffusion", |
|
"pipeline_class": SDImagePipeline, |
|
"default_parameters": { |
|
"cfg_scale": 7.0, |
|
"height": 512, |
|
"width": 512, |
|
} |
|
}, |
|
"Stable Diffusion XL": { |
|
"model_folder": "models/stable_diffusion_xl", |
|
"pipeline_class": SDXLImagePipeline, |
|
"default_parameters": { |
|
"cfg_scale": 7.0, |
|
} |
|
}, |
|
"Stable Diffusion 3": { |
|
"model_folder": "models/stable_diffusion_3", |
|
"pipeline_class": SD3ImagePipeline, |
|
"default_parameters": { |
|
"cfg_scale": 7.0, |
|
} |
|
}, |
|
"Stable Diffusion XL Turbo": { |
|
"model_folder": "models/stable_diffusion_xl_turbo", |
|
"pipeline_class": SDXLImagePipeline, |
|
"default_parameters": { |
|
"negative_prompt": "", |
|
"cfg_scale": 1.0, |
|
"num_inference_steps": 1, |
|
"height": 512, |
|
"width": 512, |
|
} |
|
}, |
|
"Kolors": { |
|
"model_folder": "models/kolors", |
|
"pipeline_class": SDXLImagePipeline, |
|
"default_parameters": { |
|
"cfg_scale": 7.0, |
|
} |
|
}, |
|
"HunyuanDiT": { |
|
"model_folder": "models/HunyuanDiT", |
|
"pipeline_class": HunyuanDiTImagePipeline, |
|
"default_parameters": { |
|
"cfg_scale": 7.0, |
|
} |
|
}, |
|
"FLUX": { |
|
"model_folder": "models/FLUX", |
|
"pipeline_class": FluxImagePipeline, |
|
"default_parameters": { |
|
"cfg_scale": 1.0, |
|
} |
|
} |
|
}, |
|
"max_num_painter_layers": 8, |
|
"max_num_model_cache": 1, |
|
} |
|
|
|
|
|
def load_model_list(model_type): |
|
if model_type is None: |
|
return [] |
|
folder = config["model_config"][model_type]["model_folder"] |
|
file_list = [i for i in os.listdir(folder) if i.endswith(".safetensors")] |
|
if model_type in ["HunyuanDiT", "Kolors", "FLUX"]: |
|
file_list += [i for i in os.listdir(folder) if os.path.isdir(os.path.join(folder, i))] |
|
file_list = sorted(file_list) |
|
return file_list |
|
|
|
|
|
def load_model(model_type, model_path): |
|
global model_dict |
|
model_key = f"{model_type}:{model_path}" |
|
if model_key in model_dict: |
|
return model_dict[model_key] |
|
model_path = os.path.join(config["model_config"][model_type]["model_folder"], model_path) |
|
model_manager = ModelManager() |
|
if model_type == "HunyuanDiT": |
|
model_manager.load_models([ |
|
os.path.join(model_path, "clip_text_encoder/pytorch_model.bin"), |
|
os.path.join(model_path, "mt5/pytorch_model.bin"), |
|
os.path.join(model_path, "model/pytorch_model_ema.pt"), |
|
os.path.join(model_path, "sdxl-vae-fp16-fix/diffusion_pytorch_model.bin"), |
|
]) |
|
elif model_type == "Kolors": |
|
model_manager.load_models([ |
|
os.path.join(model_path, "text_encoder"), |
|
os.path.join(model_path, "unet/diffusion_pytorch_model.safetensors"), |
|
os.path.join(model_path, "vae/diffusion_pytorch_model.safetensors"), |
|
]) |
|
elif model_type == "FLUX": |
|
model_manager.torch_dtype = torch.bfloat16 |
|
file_list = [ |
|
os.path.join(model_path, "text_encoder/model.safetensors"), |
|
os.path.join(model_path, "text_encoder_2"), |
|
] |
|
for file_name in os.listdir(model_path): |
|
if file_name.endswith(".safetensors"): |
|
file_list.append(os.path.join(model_path, file_name)) |
|
model_manager.load_models(file_list) |
|
else: |
|
model_manager.load_model(model_path) |
|
pipe = config["model_config"][model_type]["pipeline_class"].from_model_manager(model_manager) |
|
while len(model_dict) + 1 > config["max_num_model_cache"]: |
|
key = next(iter(model_dict.keys())) |
|
model_manager_to_release, _ = model_dict[key] |
|
model_manager_to_release.to("cpu") |
|
del model_dict[key] |
|
torch.cuda.empty_cache() |
|
model_dict[model_key] = model_manager, pipe |
|
return model_manager, pipe |
|
|
|
|
|
model_dict = {} |
|
|
|
with gr.Blocks() as app: |
|
gr.Markdown("# DiffSynth-Studio Painter") |
|
with gr.Row(): |
|
with gr.Column(scale=382, min_width=100): |
|
|
|
with gr.Accordion(label="Model"): |
|
model_type = gr.Dropdown(choices=[i for i in config["model_config"]], label="Model type") |
|
model_path = gr.Dropdown(choices=[], interactive=True, label="Model path") |
|
|
|
@gr.on(inputs=model_type, outputs=model_path, triggers=model_type.change) |
|
def model_type_to_model_path(model_type): |
|
return gr.Dropdown(choices=load_model_list(model_type)) |
|
|
|
with gr.Accordion(label="Prompt"): |
|
prompt = gr.Textbox(label="Prompt", lines=3) |
|
negative_prompt = gr.Textbox(label="Negative prompt", lines=1) |
|
cfg_scale = gr.Slider(minimum=1.0, maximum=10.0, value=7.0, step=0.1, interactive=True, label="Classifier-free guidance scale") |
|
embedded_guidance = gr.Slider(minimum=0.0, maximum=10.0, value=0.0, step=0.1, interactive=True, label="Embedded guidance scale (only for FLUX)") |
|
|
|
with gr.Accordion(label="Image"): |
|
num_inference_steps = gr.Slider(minimum=1, maximum=100, value=20, step=1, interactive=True, label="Inference steps") |
|
height = gr.Slider(minimum=64, maximum=2048, value=1024, step=64, interactive=True, label="Height") |
|
width = gr.Slider(minimum=64, maximum=2048, value=1024, step=64, interactive=True, label="Width") |
|
with gr.Column(): |
|
use_fixed_seed = gr.Checkbox(value=True, interactive=False, label="Use fixed seed") |
|
seed = gr.Number(minimum=0, maximum=10**9, value=0, interactive=True, label="Random seed", show_label=False) |
|
|
|
@gr.on( |
|
inputs=[model_type, model_path, prompt, negative_prompt, cfg_scale, embedded_guidance, num_inference_steps, height, width], |
|
outputs=[prompt, negative_prompt, cfg_scale, embedded_guidance, num_inference_steps, height, width], |
|
triggers=model_path.change |
|
) |
|
def model_path_to_default_params(model_type, model_path, prompt, negative_prompt, cfg_scale, embedded_guidance, num_inference_steps, height, width): |
|
load_model(model_type, model_path) |
|
cfg_scale = config["model_config"][model_type]["default_parameters"].get("cfg_scale", cfg_scale) |
|
embedded_guidance = config["model_config"][model_type]["default_parameters"].get("embedded_guidance", embedded_guidance) |
|
num_inference_steps = config["model_config"][model_type]["default_parameters"].get("num_inference_steps", num_inference_steps) |
|
height = config["model_config"][model_type]["default_parameters"].get("height", height) |
|
width = config["model_config"][model_type]["default_parameters"].get("width", width) |
|
return prompt, negative_prompt, cfg_scale, embedded_guidance, num_inference_steps, height, width |
|
|
|
|
|
with gr.Column(scale=618, min_width=100): |
|
with gr.Accordion(label="Painter"): |
|
enable_local_prompt_list = [] |
|
local_prompt_list = [] |
|
mask_scale_list = [] |
|
canvas_list = [] |
|
for painter_layer_id in range(config["max_num_painter_layers"]): |
|
with gr.Tab(label=f"Layer {painter_layer_id}"): |
|
enable_local_prompt = gr.Checkbox(label="Enable", value=False, key=f"enable_local_prompt_{painter_layer_id}") |
|
local_prompt = gr.Textbox(label="Local prompt", key=f"local_prompt_{painter_layer_id}") |
|
mask_scale = gr.Slider(minimum=0.0, maximum=5.0, value=1.0, step=0.1, interactive=True, label="Mask scale", key=f"mask_scale_{painter_layer_id}") |
|
canvas = gr.ImageEditor(canvas_size=(512, 1), sources=None, layers=False, interactive=True, image_mode="RGBA", |
|
brush=gr.Brush(default_size=100, default_color="#000000", colors=["#000000"]), |
|
label="Painter", key=f"canvas_{painter_layer_id}") |
|
@gr.on(inputs=[height, width, canvas], outputs=canvas, triggers=[height.change, width.change, canvas.clear, enable_local_prompt.change], show_progress="hidden") |
|
def resize_canvas(height, width, canvas): |
|
h, w = canvas["background"].shape[:2] |
|
if h != height or width != w: |
|
return np.ones((height, width, 3), dtype=np.uint8) * 255 |
|
else: |
|
return canvas |
|
|
|
enable_local_prompt_list.append(enable_local_prompt) |
|
local_prompt_list.append(local_prompt) |
|
mask_scale_list.append(mask_scale) |
|
canvas_list.append(canvas) |
|
with gr.Accordion(label="Results"): |
|
run_button = gr.Button(value="Generate", variant="primary") |
|
output_image = gr.Image(sources=None, show_label=False, interactive=False, type="pil") |
|
with gr.Row(): |
|
with gr.Column(): |
|
output_to_painter_button = gr.Button(value="Set as painter's background") |
|
with gr.Column(): |
|
output_to_input_button = gr.Button(value="Set as input image") |
|
painter_background = gr.State(None) |
|
input_background = gr.State(None) |
|
@gr.on( |
|
inputs=[model_type, model_path, prompt, negative_prompt, cfg_scale, embedded_guidance, num_inference_steps, height, width, seed] + enable_local_prompt_list + local_prompt_list + mask_scale_list + canvas_list, |
|
outputs=[output_image], |
|
triggers=run_button.click |
|
) |
|
def generate_image(model_type, model_path, prompt, negative_prompt, cfg_scale, embedded_guidance, num_inference_steps, height, width, seed, *args, progress=gr.Progress()): |
|
_, pipe = load_model(model_type, model_path) |
|
input_params = { |
|
"prompt": prompt, |
|
"negative_prompt": negative_prompt, |
|
"cfg_scale": cfg_scale, |
|
"num_inference_steps": num_inference_steps, |
|
"height": height, |
|
"width": width, |
|
"progress_bar_cmd": progress.tqdm, |
|
} |
|
if isinstance(pipe, FluxImagePipeline): |
|
input_params["embedded_guidance"] = embedded_guidance |
|
enable_local_prompt_list, local_prompt_list, mask_scale_list, canvas_list = ( |
|
args[0 * config["max_num_painter_layers"]: 1 * config["max_num_painter_layers"]], |
|
args[1 * config["max_num_painter_layers"]: 2 * config["max_num_painter_layers"]], |
|
args[2 * config["max_num_painter_layers"]: 3 * config["max_num_painter_layers"]], |
|
args[3 * config["max_num_painter_layers"]: 4 * config["max_num_painter_layers"]] |
|
) |
|
local_prompts, masks, mask_scales = [], [], [] |
|
for enable_local_prompt, local_prompt, mask_scale, canvas in zip( |
|
enable_local_prompt_list, local_prompt_list, mask_scale_list, canvas_list |
|
): |
|
if enable_local_prompt: |
|
local_prompts.append(local_prompt) |
|
masks.append(Image.fromarray(canvas["layers"][0][:, :, -1]).convert("RGB")) |
|
mask_scales.append(mask_scale) |
|
input_params.update({ |
|
"local_prompts": local_prompts, |
|
"masks": masks, |
|
"mask_scales": mask_scales, |
|
}) |
|
torch.manual_seed(seed) |
|
image = pipe(**input_params) |
|
return image |
|
|
|
@gr.on(inputs=[output_image] + canvas_list, outputs=canvas_list, triggers=output_to_painter_button.click) |
|
def send_output_to_painter_background(output_image, *canvas_list): |
|
for canvas in canvas_list: |
|
h, w = canvas["background"].shape[:2] |
|
canvas["background"] = output_image.resize((w, h)) |
|
return tuple(canvas_list) |
|
app.launch() |
|
|