|
from .svd_image_encoder import SVDImageEncoder |
|
from .sd3_dit import RMSNorm |
|
from transformers import CLIPImageProcessor |
|
import torch |
|
|
|
|
|
class MLPProjModel(torch.nn.Module): |
|
def __init__(self, cross_attention_dim=768, id_embeddings_dim=512, num_tokens=4): |
|
super().__init__() |
|
|
|
self.cross_attention_dim = cross_attention_dim |
|
self.num_tokens = num_tokens |
|
|
|
self.proj = torch.nn.Sequential( |
|
torch.nn.Linear(id_embeddings_dim, id_embeddings_dim*2), |
|
torch.nn.GELU(), |
|
torch.nn.Linear(id_embeddings_dim*2, cross_attention_dim*num_tokens), |
|
) |
|
self.norm = torch.nn.LayerNorm(cross_attention_dim) |
|
|
|
def forward(self, id_embeds): |
|
x = self.proj(id_embeds) |
|
x = x.reshape(-1, self.num_tokens, self.cross_attention_dim) |
|
x = self.norm(x) |
|
return x |
|
|
|
class IpAdapterModule(torch.nn.Module): |
|
def __init__(self, num_attention_heads, attention_head_dim, input_dim): |
|
super().__init__() |
|
self.num_heads = num_attention_heads |
|
self.head_dim = attention_head_dim |
|
output_dim = num_attention_heads * attention_head_dim |
|
self.to_k_ip = torch.nn.Linear(input_dim, output_dim, bias=False) |
|
self.to_v_ip = torch.nn.Linear(input_dim, output_dim, bias=False) |
|
self.norm_added_k = RMSNorm(attention_head_dim, eps=1e-5, elementwise_affine=False) |
|
|
|
|
|
def forward(self, hidden_states): |
|
batch_size = hidden_states.shape[0] |
|
|
|
ip_k = self.to_k_ip(hidden_states) |
|
ip_k = ip_k.view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2) |
|
ip_k = self.norm_added_k(ip_k) |
|
|
|
ip_v = self.to_v_ip(hidden_states) |
|
ip_v = ip_v.view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2) |
|
return ip_k, ip_v |
|
|
|
|
|
class FluxIpAdapter(torch.nn.Module): |
|
def __init__(self, num_attention_heads=24, attention_head_dim=128, cross_attention_dim=4096, num_tokens=128, num_blocks=57): |
|
super().__init__() |
|
self.ipadapter_modules = torch.nn.ModuleList([IpAdapterModule(num_attention_heads, attention_head_dim, cross_attention_dim) for _ in range(num_blocks)]) |
|
self.image_proj = MLPProjModel(cross_attention_dim=cross_attention_dim, id_embeddings_dim=1152, num_tokens=num_tokens) |
|
self.set_adapter() |
|
|
|
def set_adapter(self): |
|
self.call_block_id = {i:i for i in range(len(self.ipadapter_modules))} |
|
|
|
def forward(self, hidden_states, scale=1.0): |
|
hidden_states = self.image_proj(hidden_states) |
|
hidden_states = hidden_states.view(1, -1, hidden_states.shape[-1]) |
|
ip_kv_dict = {} |
|
for block_id in self.call_block_id: |
|
ipadapter_id = self.call_block_id[block_id] |
|
ip_k, ip_v = self.ipadapter_modules[ipadapter_id](hidden_states) |
|
ip_kv_dict[block_id] = { |
|
"ip_k": ip_k, |
|
"ip_v": ip_v, |
|
"scale": scale |
|
} |
|
return ip_kv_dict |
|
|
|
@staticmethod |
|
def state_dict_converter(): |
|
return FluxIpAdapterStateDictConverter() |
|
|
|
|
|
class FluxIpAdapterStateDictConverter: |
|
def __init__(self): |
|
pass |
|
|
|
def from_diffusers(self, state_dict): |
|
state_dict_ = {} |
|
for name in state_dict["ip_adapter"]: |
|
name_ = 'ipadapter_modules.' + name |
|
state_dict_[name_] = state_dict["ip_adapter"][name] |
|
for name in state_dict["image_proj"]: |
|
name_ = "image_proj." + name |
|
state_dict_[name_] = state_dict["image_proj"][name] |
|
return state_dict_ |
|
|
|
def from_civitai(self, state_dict): |
|
return self.from_diffusers(state_dict) |
|
|