|
import torch |
|
from .sd3_dit import TimestepEmbeddings, RMSNorm |
|
from .utils import init_weights_on_device |
|
from einops import rearrange, repeat |
|
from tqdm import tqdm |
|
from typing import Union, Tuple, List |
|
|
|
|
|
def HunyuanVideoRope(latents): |
|
def _to_tuple(x, dim=2): |
|
if isinstance(x, int): |
|
return (x,) * dim |
|
elif len(x) == dim: |
|
return x |
|
else: |
|
raise ValueError(f"Expected length {dim} or int, but got {x}") |
|
|
|
|
|
def get_meshgrid_nd(start, *args, dim=2): |
|
""" |
|
Get n-D meshgrid with start, stop and num. |
|
|
|
Args: |
|
start (int or tuple): If len(args) == 0, start is num; If len(args) == 1, start is start, args[0] is stop, |
|
step is 1; If len(args) == 2, start is start, args[0] is stop, args[1] is num. For n-dim, start/stop/num |
|
should be int or n-tuple. If n-tuple is provided, the meshgrid will be stacked following the dim order in |
|
n-tuples. |
|
*args: See above. |
|
dim (int): Dimension of the meshgrid. Defaults to 2. |
|
|
|
Returns: |
|
grid (np.ndarray): [dim, ...] |
|
""" |
|
if len(args) == 0: |
|
|
|
num = _to_tuple(start, dim=dim) |
|
start = (0,) * dim |
|
stop = num |
|
elif len(args) == 1: |
|
|
|
start = _to_tuple(start, dim=dim) |
|
stop = _to_tuple(args[0], dim=dim) |
|
num = [stop[i] - start[i] for i in range(dim)] |
|
elif len(args) == 2: |
|
|
|
start = _to_tuple(start, dim=dim) |
|
stop = _to_tuple(args[0], dim=dim) |
|
num = _to_tuple(args[1], dim=dim) |
|
else: |
|
raise ValueError(f"len(args) should be 0, 1 or 2, but got {len(args)}") |
|
|
|
|
|
axis_grid = [] |
|
for i in range(dim): |
|
a, b, n = start[i], stop[i], num[i] |
|
g = torch.linspace(a, b, n + 1, dtype=torch.float32)[:n] |
|
axis_grid.append(g) |
|
grid = torch.meshgrid(*axis_grid, indexing="ij") |
|
grid = torch.stack(grid, dim=0) |
|
|
|
return grid |
|
|
|
|
|
def get_1d_rotary_pos_embed( |
|
dim: int, |
|
pos: Union[torch.FloatTensor, int], |
|
theta: float = 10000.0, |
|
use_real: bool = False, |
|
theta_rescale_factor: float = 1.0, |
|
interpolation_factor: float = 1.0, |
|
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]: |
|
""" |
|
Precompute the frequency tensor for complex exponential (cis) with given dimensions. |
|
(Note: `cis` means `cos + i * sin`, where i is the imaginary unit.) |
|
|
|
This function calculates a frequency tensor with complex exponential using the given dimension 'dim' |
|
and the end index 'end'. The 'theta' parameter scales the frequencies. |
|
The returned tensor contains complex values in complex64 data type. |
|
|
|
Args: |
|
dim (int): Dimension of the frequency tensor. |
|
pos (int or torch.FloatTensor): Position indices for the frequency tensor. [S] or scalar |
|
theta (float, optional): Scaling factor for frequency computation. Defaults to 10000.0. |
|
use_real (bool, optional): If True, return real part and imaginary part separately. |
|
Otherwise, return complex numbers. |
|
theta_rescale_factor (float, optional): Rescale factor for theta. Defaults to 1.0. |
|
|
|
Returns: |
|
freqs_cis: Precomputed frequency tensor with complex exponential. [S, D/2] |
|
freqs_cos, freqs_sin: Precomputed frequency tensor with real and imaginary parts separately. [S, D] |
|
""" |
|
if isinstance(pos, int): |
|
pos = torch.arange(pos).float() |
|
|
|
|
|
|
|
if theta_rescale_factor != 1.0: |
|
theta *= theta_rescale_factor ** (dim / (dim - 2)) |
|
|
|
freqs = 1.0 / ( |
|
theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim) |
|
) |
|
|
|
freqs = torch.outer(pos * interpolation_factor, freqs) |
|
if use_real: |
|
freqs_cos = freqs.cos().repeat_interleave(2, dim=1) |
|
freqs_sin = freqs.sin().repeat_interleave(2, dim=1) |
|
return freqs_cos, freqs_sin |
|
else: |
|
freqs_cis = torch.polar( |
|
torch.ones_like(freqs), freqs |
|
) |
|
return freqs_cis |
|
|
|
|
|
def get_nd_rotary_pos_embed( |
|
rope_dim_list, |
|
start, |
|
*args, |
|
theta=10000.0, |
|
use_real=False, |
|
theta_rescale_factor: Union[float, List[float]] = 1.0, |
|
interpolation_factor: Union[float, List[float]] = 1.0, |
|
): |
|
""" |
|
This is a n-d version of precompute_freqs_cis, which is a RoPE for tokens with n-d structure. |
|
|
|
Args: |
|
rope_dim_list (list of int): Dimension of each rope. len(rope_dim_list) should equal to n. |
|
sum(rope_dim_list) should equal to head_dim of attention layer. |
|
start (int | tuple of int | list of int): If len(args) == 0, start is num; If len(args) == 1, start is start, |
|
args[0] is stop, step is 1; If len(args) == 2, start is start, args[0] is stop, args[1] is num. |
|
*args: See above. |
|
theta (float): Scaling factor for frequency computation. Defaults to 10000.0. |
|
use_real (bool): If True, return real part and imaginary part separately. Otherwise, return complex numbers. |
|
Some libraries such as TensorRT does not support complex64 data type. So it is useful to provide a real |
|
part and an imaginary part separately. |
|
theta_rescale_factor (float): Rescale factor for theta. Defaults to 1.0. |
|
|
|
Returns: |
|
pos_embed (torch.Tensor): [HW, D/2] |
|
""" |
|
|
|
grid = get_meshgrid_nd( |
|
start, *args, dim=len(rope_dim_list) |
|
) |
|
|
|
if isinstance(theta_rescale_factor, int) or isinstance(theta_rescale_factor, float): |
|
theta_rescale_factor = [theta_rescale_factor] * len(rope_dim_list) |
|
elif isinstance(theta_rescale_factor, list) and len(theta_rescale_factor) == 1: |
|
theta_rescale_factor = [theta_rescale_factor[0]] * len(rope_dim_list) |
|
assert len(theta_rescale_factor) == len( |
|
rope_dim_list |
|
), "len(theta_rescale_factor) should equal to len(rope_dim_list)" |
|
|
|
if isinstance(interpolation_factor, int) or isinstance(interpolation_factor, float): |
|
interpolation_factor = [interpolation_factor] * len(rope_dim_list) |
|
elif isinstance(interpolation_factor, list) and len(interpolation_factor) == 1: |
|
interpolation_factor = [interpolation_factor[0]] * len(rope_dim_list) |
|
assert len(interpolation_factor) == len( |
|
rope_dim_list |
|
), "len(interpolation_factor) should equal to len(rope_dim_list)" |
|
|
|
|
|
embs = [] |
|
for i in range(len(rope_dim_list)): |
|
emb = get_1d_rotary_pos_embed( |
|
rope_dim_list[i], |
|
grid[i].reshape(-1), |
|
theta, |
|
use_real=use_real, |
|
theta_rescale_factor=theta_rescale_factor[i], |
|
interpolation_factor=interpolation_factor[i], |
|
) |
|
embs.append(emb) |
|
|
|
if use_real: |
|
cos = torch.cat([emb[0] for emb in embs], dim=1) |
|
sin = torch.cat([emb[1] for emb in embs], dim=1) |
|
return cos, sin |
|
else: |
|
emb = torch.cat(embs, dim=1) |
|
return emb |
|
|
|
freqs_cos, freqs_sin = get_nd_rotary_pos_embed( |
|
[16, 56, 56], |
|
[latents.shape[2], latents.shape[3] // 2, latents.shape[4] // 2], |
|
theta=256, |
|
use_real=True, |
|
theta_rescale_factor=1, |
|
) |
|
return freqs_cos, freqs_sin |
|
|
|
|
|
class PatchEmbed(torch.nn.Module): |
|
def __init__(self, patch_size=(1, 2, 2), in_channels=16, embed_dim=3072): |
|
super().__init__() |
|
self.proj = torch.nn.Conv3d(in_channels, embed_dim, kernel_size=patch_size, stride=patch_size) |
|
|
|
def forward(self, x): |
|
x = self.proj(x) |
|
x = x.flatten(2).transpose(1, 2) |
|
return x |
|
|
|
|
|
class IndividualTokenRefinerBlock(torch.nn.Module): |
|
def __init__(self, hidden_size=3072, num_heads=24): |
|
super().__init__() |
|
self.num_heads = num_heads |
|
self.norm1 = torch.nn.LayerNorm(hidden_size, elementwise_affine=True, eps=1e-6) |
|
self.self_attn_qkv = torch.nn.Linear(hidden_size, hidden_size * 3) |
|
self.self_attn_proj = torch.nn.Linear(hidden_size, hidden_size) |
|
|
|
self.norm2 = torch.nn.LayerNorm(hidden_size, elementwise_affine=True, eps=1e-6) |
|
self.mlp = torch.nn.Sequential( |
|
torch.nn.Linear(hidden_size, hidden_size * 4), |
|
torch.nn.SiLU(), |
|
torch.nn.Linear(hidden_size * 4, hidden_size) |
|
) |
|
self.adaLN_modulation = torch.nn.Sequential( |
|
torch.nn.SiLU(), |
|
torch.nn.Linear(hidden_size, hidden_size * 2, device="cuda", dtype=torch.bfloat16), |
|
) |
|
|
|
def forward(self, x, c, attn_mask=None): |
|
gate_msa, gate_mlp = self.adaLN_modulation(c).chunk(2, dim=1) |
|
|
|
norm_x = self.norm1(x) |
|
qkv = self.self_attn_qkv(norm_x) |
|
q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads) |
|
|
|
attn = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask) |
|
attn = rearrange(attn, "B H L D -> B L (H D)") |
|
|
|
x = x + self.self_attn_proj(attn) * gate_msa.unsqueeze(1) |
|
x = x + self.mlp(self.norm2(x)) * gate_mlp.unsqueeze(1) |
|
|
|
return x |
|
|
|
|
|
class SingleTokenRefiner(torch.nn.Module): |
|
def __init__(self, in_channels=4096, hidden_size=3072, depth=2): |
|
super().__init__() |
|
self.input_embedder = torch.nn.Linear(in_channels, hidden_size, bias=True) |
|
self.t_embedder = TimestepEmbeddings(256, hidden_size, computation_device="cpu") |
|
self.c_embedder = torch.nn.Sequential( |
|
torch.nn.Linear(in_channels, hidden_size), |
|
torch.nn.SiLU(), |
|
torch.nn.Linear(hidden_size, hidden_size) |
|
) |
|
self.blocks = torch.nn.ModuleList([IndividualTokenRefinerBlock(hidden_size=hidden_size) for _ in range(depth)]) |
|
|
|
def forward(self, x, t, mask=None): |
|
timestep_aware_representations = self.t_embedder(t, dtype=torch.float32) |
|
|
|
mask_float = mask.float().unsqueeze(-1) |
|
context_aware_representations = (x * mask_float).sum(dim=1) / mask_float.sum(dim=1) |
|
context_aware_representations = self.c_embedder(context_aware_representations) |
|
c = timestep_aware_representations + context_aware_representations |
|
|
|
x = self.input_embedder(x) |
|
|
|
mask = mask.to(device=x.device, dtype=torch.bool) |
|
mask = repeat(mask, "B L -> B 1 D L", D=mask.shape[-1]) |
|
mask = mask & mask.transpose(2, 3) |
|
mask[:, :, :, 0] = True |
|
|
|
for block in self.blocks: |
|
x = block(x, c, mask) |
|
|
|
return x |
|
|
|
|
|
class ModulateDiT(torch.nn.Module): |
|
def __init__(self, hidden_size, factor=6): |
|
super().__init__() |
|
self.act = torch.nn.SiLU() |
|
self.linear = torch.nn.Linear(hidden_size, factor * hidden_size) |
|
|
|
def forward(self, x): |
|
return self.linear(self.act(x)) |
|
|
|
|
|
def modulate(x, shift=None, scale=None): |
|
if scale is None and shift is None: |
|
return x |
|
elif shift is None: |
|
return x * (1 + scale.unsqueeze(1)) |
|
elif scale is None: |
|
return x + shift.unsqueeze(1) |
|
else: |
|
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1) |
|
|
|
|
|
def reshape_for_broadcast( |
|
freqs_cis, |
|
x: torch.Tensor, |
|
head_first=False, |
|
): |
|
ndim = x.ndim |
|
assert 0 <= 1 < ndim |
|
|
|
if isinstance(freqs_cis, tuple): |
|
|
|
if head_first: |
|
assert freqs_cis[0].shape == ( |
|
x.shape[-2], |
|
x.shape[-1], |
|
), f"freqs_cis shape {freqs_cis[0].shape} does not match x shape {x.shape}" |
|
shape = [ |
|
d if i == ndim - 2 or i == ndim - 1 else 1 |
|
for i, d in enumerate(x.shape) |
|
] |
|
else: |
|
assert freqs_cis[0].shape == ( |
|
x.shape[1], |
|
x.shape[-1], |
|
), f"freqs_cis shape {freqs_cis[0].shape} does not match x shape {x.shape}" |
|
shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)] |
|
return freqs_cis[0].view(*shape), freqs_cis[1].view(*shape) |
|
else: |
|
|
|
if head_first: |
|
assert freqs_cis.shape == ( |
|
x.shape[-2], |
|
x.shape[-1], |
|
), f"freqs_cis shape {freqs_cis.shape} does not match x shape {x.shape}" |
|
shape = [ |
|
d if i == ndim - 2 or i == ndim - 1 else 1 |
|
for i, d in enumerate(x.shape) |
|
] |
|
else: |
|
assert freqs_cis.shape == ( |
|
x.shape[1], |
|
x.shape[-1], |
|
), f"freqs_cis shape {freqs_cis.shape} does not match x shape {x.shape}" |
|
shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)] |
|
return freqs_cis.view(*shape) |
|
|
|
|
|
def rotate_half(x): |
|
x_real, x_imag = ( |
|
x.float().reshape(*x.shape[:-1], -1, 2).unbind(-1) |
|
) |
|
return torch.stack([-x_imag, x_real], dim=-1).flatten(3) |
|
|
|
|
|
def apply_rotary_emb( |
|
xq: torch.Tensor, |
|
xk: torch.Tensor, |
|
freqs_cis, |
|
head_first: bool = False, |
|
): |
|
xk_out = None |
|
if isinstance(freqs_cis, tuple): |
|
cos, sin = reshape_for_broadcast(freqs_cis, xq, head_first) |
|
cos, sin = cos.to(xq.device), sin.to(xq.device) |
|
|
|
|
|
xq_out = (xq.float() * cos + rotate_half(xq.float()) * sin).type_as(xq) |
|
xk_out = (xk.float() * cos + rotate_half(xk.float()) * sin).type_as(xk) |
|
else: |
|
|
|
xq_ = torch.view_as_complex( |
|
xq.float().reshape(*xq.shape[:-1], -1, 2) |
|
) |
|
freqs_cis = reshape_for_broadcast(freqs_cis, xq_, head_first).to( |
|
xq.device |
|
) |
|
|
|
|
|
xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3).type_as(xq) |
|
xk_ = torch.view_as_complex( |
|
xk.float().reshape(*xk.shape[:-1], -1, 2) |
|
) |
|
xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3).type_as(xk) |
|
|
|
return xq_out, xk_out |
|
|
|
|
|
def attention(q, k, v): |
|
q, k, v = q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2) |
|
x = torch.nn.functional.scaled_dot_product_attention(q, k, v) |
|
x = x.transpose(1, 2).flatten(2, 3) |
|
return x |
|
|
|
|
|
class MMDoubleStreamBlockComponent(torch.nn.Module): |
|
def __init__(self, hidden_size=3072, heads_num=24, mlp_width_ratio=4): |
|
super().__init__() |
|
self.heads_num = heads_num |
|
|
|
self.mod = ModulateDiT(hidden_size) |
|
self.norm1 = torch.nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) |
|
|
|
self.to_qkv = torch.nn.Linear(hidden_size, hidden_size * 3) |
|
self.norm_q = RMSNorm(dim=hidden_size // heads_num, eps=1e-6) |
|
self.norm_k = RMSNorm(dim=hidden_size // heads_num, eps=1e-6) |
|
self.to_out = torch.nn.Linear(hidden_size, hidden_size) |
|
|
|
self.norm2 = torch.nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) |
|
self.ff = torch.nn.Sequential( |
|
torch.nn.Linear(hidden_size, hidden_size * mlp_width_ratio), |
|
torch.nn.GELU(approximate="tanh"), |
|
torch.nn.Linear(hidden_size * mlp_width_ratio, hidden_size) |
|
) |
|
|
|
def forward(self, hidden_states, conditioning, freqs_cis=None): |
|
mod1_shift, mod1_scale, mod1_gate, mod2_shift, mod2_scale, mod2_gate = self.mod(conditioning).chunk(6, dim=-1) |
|
|
|
norm_hidden_states = self.norm1(hidden_states) |
|
norm_hidden_states = modulate(norm_hidden_states, shift=mod1_shift, scale=mod1_scale) |
|
qkv = self.to_qkv(norm_hidden_states) |
|
q, k, v = rearrange(qkv, "B L (K H D) -> K B L H D", K=3, H=self.heads_num) |
|
|
|
q = self.norm_q(q) |
|
k = self.norm_k(k) |
|
|
|
if freqs_cis is not None: |
|
q, k = apply_rotary_emb(q, k, freqs_cis, head_first=False) |
|
|
|
return (q, k, v), (mod1_gate, mod2_shift, mod2_scale, mod2_gate) |
|
|
|
def process_ff(self, hidden_states, attn_output, mod): |
|
mod1_gate, mod2_shift, mod2_scale, mod2_gate = mod |
|
hidden_states = hidden_states + self.to_out(attn_output) * mod1_gate.unsqueeze(1) |
|
hidden_states = hidden_states + self.ff(modulate(self.norm2(hidden_states), shift=mod2_shift, scale=mod2_scale)) * mod2_gate.unsqueeze(1) |
|
return hidden_states |
|
|
|
|
|
class MMDoubleStreamBlock(torch.nn.Module): |
|
def __init__(self, hidden_size=3072, heads_num=24, mlp_width_ratio=4): |
|
super().__init__() |
|
self.component_a = MMDoubleStreamBlockComponent(hidden_size, heads_num, mlp_width_ratio) |
|
self.component_b = MMDoubleStreamBlockComponent(hidden_size, heads_num, mlp_width_ratio) |
|
|
|
def forward(self, hidden_states_a, hidden_states_b, conditioning, freqs_cis): |
|
(q_a, k_a, v_a), mod_a = self.component_a(hidden_states_a, conditioning, freqs_cis) |
|
(q_b, k_b, v_b), mod_b = self.component_b(hidden_states_b, conditioning, freqs_cis=None) |
|
|
|
q_a, q_b = torch.concat([q_a, q_b[:, :71]], dim=1), q_b[:, 71:].contiguous() |
|
k_a, k_b = torch.concat([k_a, k_b[:, :71]], dim=1), k_b[:, 71:].contiguous() |
|
v_a, v_b = torch.concat([v_a, v_b[:, :71]], dim=1), v_b[:, 71:].contiguous() |
|
attn_output_a = attention(q_a, k_a, v_a) |
|
attn_output_b = attention(q_b, k_b, v_b) |
|
attn_output_a, attn_output_b = attn_output_a[:, :-71].contiguous(), torch.concat([attn_output_a[:, -71:], attn_output_b], dim=1) |
|
|
|
hidden_states_a = self.component_a.process_ff(hidden_states_a, attn_output_a, mod_a) |
|
hidden_states_b = self.component_b.process_ff(hidden_states_b, attn_output_b, mod_b) |
|
return hidden_states_a, hidden_states_b |
|
|
|
|
|
class MMSingleStreamBlockOriginal(torch.nn.Module): |
|
def __init__(self, hidden_size=3072, heads_num=24, mlp_width_ratio=4): |
|
super().__init__() |
|
self.hidden_size = hidden_size |
|
self.heads_num = heads_num |
|
self.mlp_hidden_dim = hidden_size * mlp_width_ratio |
|
|
|
self.linear1 = torch.nn.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim) |
|
self.linear2 = torch.nn.Linear(hidden_size + self.mlp_hidden_dim, hidden_size) |
|
|
|
self.q_norm = RMSNorm(dim=hidden_size // heads_num, eps=1e-6) |
|
self.k_norm = RMSNorm(dim=hidden_size // heads_num, eps=1e-6) |
|
|
|
self.pre_norm = torch.nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) |
|
|
|
self.mlp_act = torch.nn.GELU(approximate="tanh") |
|
self.modulation = ModulateDiT(hidden_size, factor=3) |
|
|
|
def forward(self, x, vec, freqs_cis=None, txt_len=256): |
|
mod_shift, mod_scale, mod_gate = self.modulation(vec).chunk(3, dim=-1) |
|
x_mod = modulate(self.pre_norm(x), shift=mod_shift, scale=mod_scale) |
|
qkv, mlp = torch.split(self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1) |
|
q, k, v = rearrange(qkv, "B L (K H D) -> K B L H D", K=3, H=self.heads_num) |
|
q = self.q_norm(q) |
|
k = self.k_norm(k) |
|
|
|
q_a, q_b = q[:, :-txt_len, :, :], q[:, -txt_len:, :, :] |
|
k_a, k_b = k[:, :-txt_len, :, :], k[:, -txt_len:, :, :] |
|
q_a, k_a = apply_rotary_emb(q_a, k_a, freqs_cis, head_first=False) |
|
q = torch.cat((q_a, q_b), dim=1) |
|
k = torch.cat((k_a, k_b), dim=1) |
|
|
|
attn_output_a = attention(q[:, :-185].contiguous(), k[:, :-185].contiguous(), v[:, :-185].contiguous()) |
|
attn_output_b = attention(q[:, -185:].contiguous(), k[:, -185:].contiguous(), v[:, -185:].contiguous()) |
|
attn_output = torch.concat([attn_output_a, attn_output_b], dim=1) |
|
|
|
output = self.linear2(torch.cat((attn_output, self.mlp_act(mlp)), 2)) |
|
return x + output * mod_gate.unsqueeze(1) |
|
|
|
|
|
class MMSingleStreamBlock(torch.nn.Module): |
|
def __init__(self, hidden_size=3072, heads_num=24, mlp_width_ratio=4): |
|
super().__init__() |
|
self.heads_num = heads_num |
|
|
|
self.mod = ModulateDiT(hidden_size, factor=3) |
|
self.norm = torch.nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) |
|
|
|
self.to_qkv = torch.nn.Linear(hidden_size, hidden_size * 3) |
|
self.norm_q = RMSNorm(dim=hidden_size // heads_num, eps=1e-6) |
|
self.norm_k = RMSNorm(dim=hidden_size // heads_num, eps=1e-6) |
|
self.to_out = torch.nn.Linear(hidden_size, hidden_size) |
|
|
|
self.ff = torch.nn.Sequential( |
|
torch.nn.Linear(hidden_size, hidden_size * mlp_width_ratio), |
|
torch.nn.GELU(approximate="tanh"), |
|
torch.nn.Linear(hidden_size * mlp_width_ratio, hidden_size, bias=False) |
|
) |
|
|
|
def forward(self, hidden_states, conditioning, freqs_cis=None, txt_len=256): |
|
mod_shift, mod_scale, mod_gate = self.mod(conditioning).chunk(3, dim=-1) |
|
|
|
norm_hidden_states = self.norm(hidden_states) |
|
norm_hidden_states = modulate(norm_hidden_states, shift=mod_shift, scale=mod_scale) |
|
qkv = self.to_qkv(norm_hidden_states) |
|
|
|
q, k, v = rearrange(qkv, "B L (K H D) -> K B L H D", K=3, H=self.heads_num) |
|
|
|
q = self.norm_q(q) |
|
k = self.norm_k(k) |
|
|
|
q_a, q_b = q[:, :-txt_len, :, :], q[:, -txt_len:, :, :] |
|
k_a, k_b = k[:, :-txt_len, :, :], k[:, -txt_len:, :, :] |
|
q_a, k_a = apply_rotary_emb(q_a, k_a, freqs_cis, head_first=False) |
|
|
|
q_a, q_b = torch.concat([q_a, q_b[:, :71]], dim=1), q_b[:, 71:].contiguous() |
|
k_a, k_b = torch.concat([k_a, k_b[:, :71]], dim=1), k_b[:, 71:].contiguous() |
|
v_a, v_b = v[:, :-185].contiguous(), v[:, -185:].contiguous() |
|
|
|
attn_output_a = attention(q_a, k_a, v_a) |
|
attn_output_b = attention(q_b, k_b, v_b) |
|
attn_output = torch.concat([attn_output_a, attn_output_b], dim=1) |
|
|
|
hidden_states = hidden_states + self.to_out(attn_output) * mod_gate.unsqueeze(1) |
|
hidden_states = hidden_states + self.ff(norm_hidden_states) * mod_gate.unsqueeze(1) |
|
return hidden_states |
|
|
|
|
|
class FinalLayer(torch.nn.Module): |
|
def __init__(self, hidden_size=3072, patch_size=(1, 2, 2), out_channels=16): |
|
super().__init__() |
|
|
|
self.norm_final = torch.nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) |
|
self.linear = torch.nn.Linear(hidden_size, patch_size[0] * patch_size[1] * patch_size[2] * out_channels) |
|
|
|
self.adaLN_modulation = torch.nn.Sequential(torch.nn.SiLU(), torch.nn.Linear(hidden_size, 2 * hidden_size)) |
|
|
|
def forward(self, x, c): |
|
shift, scale = self.adaLN_modulation(c).chunk(2, dim=1) |
|
x = modulate(self.norm_final(x), shift=shift, scale=scale) |
|
x = self.linear(x) |
|
return x |
|
|
|
|
|
class HunyuanVideoDiT(torch.nn.Module): |
|
def __init__(self, in_channels=16, hidden_size=3072, text_dim=4096, num_double_blocks=20, num_single_blocks=40): |
|
super().__init__() |
|
self.img_in = PatchEmbed(in_channels=in_channels, embed_dim=hidden_size) |
|
self.txt_in = SingleTokenRefiner(in_channels=text_dim, hidden_size=hidden_size) |
|
self.time_in = TimestepEmbeddings(256, hidden_size, computation_device="cpu") |
|
self.vector_in = torch.nn.Sequential( |
|
torch.nn.Linear(768, hidden_size), |
|
torch.nn.SiLU(), |
|
torch.nn.Linear(hidden_size, hidden_size) |
|
) |
|
self.guidance_in = TimestepEmbeddings(256, hidden_size, computation_device="cpu") |
|
self.double_blocks = torch.nn.ModuleList([MMDoubleStreamBlock(hidden_size) for _ in range(num_double_blocks)]) |
|
self.single_blocks = torch.nn.ModuleList([MMSingleStreamBlock(hidden_size) for _ in range(num_single_blocks)]) |
|
self.final_layer = FinalLayer(hidden_size) |
|
|
|
|
|
self.dtype = torch.bfloat16 |
|
self.patch_size = [1, 2, 2] |
|
self.hidden_size = 3072 |
|
self.heads_num = 24 |
|
self.rope_dim_list = [16, 56, 56] |
|
|
|
def unpatchify(self, x, T, H, W): |
|
x = rearrange(x, "B (T H W) (C pT pH pW) -> B C (T pT) (H pH) (W pW)", H=H, W=W, pT=1, pH=2, pW=2) |
|
return x |
|
|
|
def enable_block_wise_offload(self, warm_device="cuda", cold_device="cpu"): |
|
self.warm_device = warm_device |
|
self.cold_device = cold_device |
|
self.to(self.cold_device) |
|
|
|
def load_models_to_device(self, loadmodel_names=[], device="cpu"): |
|
for model_name in loadmodel_names: |
|
model = getattr(self, model_name) |
|
if model is not None: |
|
model.to(device) |
|
torch.cuda.empty_cache() |
|
|
|
def prepare_freqs(self, latents): |
|
return HunyuanVideoRope(latents) |
|
|
|
def forward( |
|
self, |
|
x: torch.Tensor, |
|
t: torch.Tensor, |
|
prompt_emb: torch.Tensor = None, |
|
text_mask: torch.Tensor = None, |
|
pooled_prompt_emb: torch.Tensor = None, |
|
freqs_cos: torch.Tensor = None, |
|
freqs_sin: torch.Tensor = None, |
|
guidance: torch.Tensor = None, |
|
**kwargs |
|
): |
|
B, C, T, H, W = x.shape |
|
|
|
vec = self.time_in(t, dtype=torch.float32) + self.vector_in(pooled_prompt_emb) + self.guidance_in(guidance * 1000, dtype=torch.float32) |
|
img = self.img_in(x) |
|
txt = self.txt_in(prompt_emb, t, text_mask) |
|
|
|
for block in tqdm(self.double_blocks, desc="Double stream blocks"): |
|
img, txt = block(img, txt, vec, (freqs_cos, freqs_sin)) |
|
|
|
x = torch.concat([img, txt], dim=1) |
|
for block in tqdm(self.single_blocks, desc="Single stream blocks"): |
|
x = block(x, vec, (freqs_cos, freqs_sin)) |
|
|
|
img = x[:, :-256] |
|
img = self.final_layer(img, vec) |
|
img = self.unpatchify(img, T=T//1, H=H//2, W=W//2) |
|
return img |
|
|
|
|
|
def enable_auto_offload(self, dtype=torch.bfloat16, device="cuda"): |
|
def cast_to(weight, dtype=None, device=None, copy=False): |
|
if device is None or weight.device == device: |
|
if not copy: |
|
if dtype is None or weight.dtype == dtype: |
|
return weight |
|
return weight.to(dtype=dtype, copy=copy) |
|
|
|
r = torch.empty_like(weight, dtype=dtype, device=device) |
|
r.copy_(weight) |
|
return r |
|
|
|
def cast_weight(s, input=None, dtype=None, device=None): |
|
if input is not None: |
|
if dtype is None: |
|
dtype = input.dtype |
|
if device is None: |
|
device = input.device |
|
weight = cast_to(s.weight, dtype, device) |
|
return weight |
|
|
|
def cast_bias_weight(s, input=None, dtype=None, device=None, bias_dtype=None): |
|
if input is not None: |
|
if dtype is None: |
|
dtype = input.dtype |
|
if bias_dtype is None: |
|
bias_dtype = dtype |
|
if device is None: |
|
device = input.device |
|
weight = cast_to(s.weight, dtype, device) |
|
bias = cast_to(s.bias, bias_dtype, device) if s.bias is not None else None |
|
return weight, bias |
|
|
|
class quantized_layer: |
|
class Linear(torch.nn.Linear): |
|
def __init__(self, *args, dtype=torch.bfloat16, device="cuda", **kwargs): |
|
super().__init__(*args, **kwargs) |
|
self.dtype = dtype |
|
self.device = device |
|
|
|
def block_forward_(self, x, i, j, dtype, device): |
|
weight_ = cast_to( |
|
self.weight[j * self.block_size: (j + 1) * self.block_size, i * self.block_size: (i + 1) * self.block_size], |
|
dtype=dtype, device=device |
|
) |
|
if self.bias is None or i > 0: |
|
bias_ = None |
|
else: |
|
bias_ = cast_to(self.bias[j * self.block_size: (j + 1) * self.block_size], dtype=dtype, device=device) |
|
x_ = x[..., i * self.block_size: (i + 1) * self.block_size] |
|
y_ = torch.nn.functional.linear(x_, weight_, bias_) |
|
del x_, weight_, bias_ |
|
torch.cuda.empty_cache() |
|
return y_ |
|
|
|
def block_forward(self, x, **kwargs): |
|
|
|
y = torch.zeros(x.shape[:-1] + (self.out_features,), dtype=x.dtype, device=x.device) |
|
for i in range((self.in_features + self.block_size - 1) // self.block_size): |
|
for j in range((self.out_features + self.block_size - 1) // self.block_size): |
|
y[..., j * self.block_size: (j + 1) * self.block_size] += self.block_forward_(x, i, j, dtype=x.dtype, device=x.device) |
|
return y |
|
|
|
def forward(self, x, **kwargs): |
|
weight, bias = cast_bias_weight(self, x, dtype=self.dtype, device=self.device) |
|
return torch.nn.functional.linear(x, weight, bias) |
|
|
|
|
|
class RMSNorm(torch.nn.Module): |
|
def __init__(self, module, dtype=torch.bfloat16, device="cuda"): |
|
super().__init__() |
|
self.module = module |
|
self.dtype = dtype |
|
self.device = device |
|
|
|
def forward(self, hidden_states, **kwargs): |
|
input_dtype = hidden_states.dtype |
|
variance = hidden_states.to(torch.float32).square().mean(-1, keepdim=True) |
|
hidden_states = hidden_states * torch.rsqrt(variance + self.module.eps) |
|
hidden_states = hidden_states.to(input_dtype) |
|
if self.module.weight is not None: |
|
weight = cast_weight(self.module, hidden_states, dtype=torch.bfloat16, device="cuda") |
|
hidden_states = hidden_states * weight |
|
return hidden_states |
|
|
|
class Conv3d(torch.nn.Conv3d): |
|
def __init__(self, *args, dtype=torch.bfloat16, device="cuda", **kwargs): |
|
super().__init__(*args, **kwargs) |
|
self.dtype = dtype |
|
self.device = device |
|
|
|
def forward(self, x): |
|
weight, bias = cast_bias_weight(self, x, dtype=self.dtype, device=self.device) |
|
return torch.nn.functional.conv3d(x, weight, bias, self.stride, self.padding, self.dilation, self.groups) |
|
|
|
class LayerNorm(torch.nn.LayerNorm): |
|
def __init__(self, *args, dtype=torch.bfloat16, device="cuda", **kwargs): |
|
super().__init__(*args, **kwargs) |
|
self.dtype = dtype |
|
self.device = device |
|
|
|
def forward(self, x): |
|
if self.weight is not None and self.bias is not None: |
|
weight, bias = cast_bias_weight(self, x, dtype=self.dtype, device=self.device) |
|
return torch.nn.functional.layer_norm(x, self.normalized_shape, weight, bias, self.eps) |
|
else: |
|
return torch.nn.functional.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps) |
|
|
|
def replace_layer(model, dtype=torch.bfloat16, device="cuda"): |
|
for name, module in model.named_children(): |
|
if isinstance(module, torch.nn.Linear): |
|
with init_weights_on_device(): |
|
new_layer = quantized_layer.Linear( |
|
module.in_features, module.out_features, bias=module.bias is not None, |
|
dtype=dtype, device=device |
|
) |
|
new_layer.load_state_dict(module.state_dict(), assign=True) |
|
setattr(model, name, new_layer) |
|
elif isinstance(module, torch.nn.Conv3d): |
|
with init_weights_on_device(): |
|
new_layer = quantized_layer.Conv3d( |
|
module.in_channels, module.out_channels, kernel_size=module.kernel_size, stride=module.stride, |
|
dtype=dtype, device=device |
|
) |
|
new_layer.load_state_dict(module.state_dict(), assign=True) |
|
setattr(model, name, new_layer) |
|
elif isinstance(module, RMSNorm): |
|
new_layer = quantized_layer.RMSNorm( |
|
module, |
|
dtype=dtype, device=device |
|
) |
|
setattr(model, name, new_layer) |
|
elif isinstance(module, torch.nn.LayerNorm): |
|
with init_weights_on_device(): |
|
new_layer = quantized_layer.LayerNorm( |
|
module.normalized_shape, elementwise_affine=module.elementwise_affine, eps=module.eps, |
|
dtype=dtype, device=device |
|
) |
|
new_layer.load_state_dict(module.state_dict(), assign=True) |
|
setattr(model, name, new_layer) |
|
else: |
|
replace_layer(module, dtype=dtype, device=device) |
|
|
|
replace_layer(self, dtype=dtype, device=device) |
|
|
|
@staticmethod |
|
def state_dict_converter(): |
|
return HunyuanVideoDiTStateDictConverter() |
|
|
|
|
|
|
|
class HunyuanVideoDiTStateDictConverter: |
|
def __init__(self): |
|
pass |
|
|
|
def from_civitai(self, state_dict): |
|
if "module" in state_dict: |
|
state_dict = state_dict["module"] |
|
direct_dict = { |
|
"img_in.proj": "img_in.proj", |
|
"time_in.mlp.0": "time_in.timestep_embedder.0", |
|
"time_in.mlp.2": "time_in.timestep_embedder.2", |
|
"vector_in.in_layer": "vector_in.0", |
|
"vector_in.out_layer": "vector_in.2", |
|
"guidance_in.mlp.0": "guidance_in.timestep_embedder.0", |
|
"guidance_in.mlp.2": "guidance_in.timestep_embedder.2", |
|
"txt_in.input_embedder": "txt_in.input_embedder", |
|
"txt_in.t_embedder.mlp.0": "txt_in.t_embedder.timestep_embedder.0", |
|
"txt_in.t_embedder.mlp.2": "txt_in.t_embedder.timestep_embedder.2", |
|
"txt_in.c_embedder.linear_1": "txt_in.c_embedder.0", |
|
"txt_in.c_embedder.linear_2": "txt_in.c_embedder.2", |
|
"final_layer.linear": "final_layer.linear", |
|
"final_layer.adaLN_modulation.1": "final_layer.adaLN_modulation.1", |
|
} |
|
txt_suffix_dict = { |
|
"norm1": "norm1", |
|
"self_attn_qkv": "self_attn_qkv", |
|
"self_attn_proj": "self_attn_proj", |
|
"norm2": "norm2", |
|
"mlp.fc1": "mlp.0", |
|
"mlp.fc2": "mlp.2", |
|
"adaLN_modulation.1": "adaLN_modulation.1", |
|
} |
|
double_suffix_dict = { |
|
"img_mod.linear": "component_a.mod.linear", |
|
"img_attn_qkv": "component_a.to_qkv", |
|
"img_attn_q_norm": "component_a.norm_q", |
|
"img_attn_k_norm": "component_a.norm_k", |
|
"img_attn_proj": "component_a.to_out", |
|
"img_mlp.fc1": "component_a.ff.0", |
|
"img_mlp.fc2": "component_a.ff.2", |
|
"txt_mod.linear": "component_b.mod.linear", |
|
"txt_attn_qkv": "component_b.to_qkv", |
|
"txt_attn_q_norm": "component_b.norm_q", |
|
"txt_attn_k_norm": "component_b.norm_k", |
|
"txt_attn_proj": "component_b.to_out", |
|
"txt_mlp.fc1": "component_b.ff.0", |
|
"txt_mlp.fc2": "component_b.ff.2", |
|
} |
|
single_suffix_dict = { |
|
"linear1": ["to_qkv", "ff.0"], |
|
"linear2": ["to_out", "ff.2"], |
|
"q_norm": "norm_q", |
|
"k_norm": "norm_k", |
|
"modulation.linear": "mod.linear", |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
state_dict_ = {} |
|
for name, param in state_dict.items(): |
|
names = name.split(".") |
|
direct_name = ".".join(names[:-1]) |
|
if direct_name in direct_dict: |
|
name_ = direct_dict[direct_name] + "." + names[-1] |
|
state_dict_[name_] = param |
|
elif names[0] == "double_blocks": |
|
prefix = ".".join(names[:2]) |
|
suffix = ".".join(names[2:-1]) |
|
name_ = prefix + "." + double_suffix_dict[suffix] + "." + names[-1] |
|
state_dict_[name_] = param |
|
elif names[0] == "single_blocks": |
|
prefix = ".".join(names[:2]) |
|
suffix = ".".join(names[2:-1]) |
|
if isinstance(single_suffix_dict[suffix], list): |
|
if suffix == "linear1": |
|
name_a, name_b = single_suffix_dict[suffix] |
|
param_a, param_b = torch.split(param, (3072*3, 3072*4), dim=0) |
|
state_dict_[prefix + "." + name_a + "." + names[-1]] = param_a |
|
state_dict_[prefix + "." + name_b + "." + names[-1]] = param_b |
|
elif suffix == "linear2": |
|
if names[-1] == "weight": |
|
name_a, name_b = single_suffix_dict[suffix] |
|
param_a, param_b = torch.split(param, (3072*1, 3072*4), dim=-1) |
|
state_dict_[prefix + "." + name_a + "." + names[-1]] = param_a |
|
state_dict_[prefix + "." + name_b + "." + names[-1]] = param_b |
|
else: |
|
name_a, name_b = single_suffix_dict[suffix] |
|
state_dict_[prefix + "." + name_a + "." + names[-1]] = param |
|
else: |
|
pass |
|
else: |
|
name_ = prefix + "." + single_suffix_dict[suffix] + "." + names[-1] |
|
state_dict_[name_] = param |
|
elif names[0] == "txt_in": |
|
prefix = ".".join(names[:4]).replace(".individual_token_refiner.", ".") |
|
suffix = ".".join(names[4:-1]) |
|
name_ = prefix + "." + txt_suffix_dict[suffix] + "." + names[-1] |
|
state_dict_[name_] = param |
|
else: |
|
pass |
|
return state_dict_ |
|
|