|
import os, torch, json, importlib |
|
from typing import List |
|
|
|
from .downloader import download_models, download_customized_models, Preset_model_id, Preset_model_website |
|
|
|
from .sd_text_encoder import SDTextEncoder |
|
from .sd_unet import SDUNet |
|
from .sd_vae_encoder import SDVAEEncoder |
|
from .sd_vae_decoder import SDVAEDecoder |
|
from .lora import get_lora_loaders |
|
|
|
from .sdxl_text_encoder import SDXLTextEncoder, SDXLTextEncoder2 |
|
from .sdxl_unet import SDXLUNet |
|
from .sdxl_vae_decoder import SDXLVAEDecoder |
|
from .sdxl_vae_encoder import SDXLVAEEncoder |
|
|
|
from .sd3_text_encoder import SD3TextEncoder1, SD3TextEncoder2, SD3TextEncoder3 |
|
from .sd3_dit import SD3DiT |
|
from .sd3_vae_decoder import SD3VAEDecoder |
|
from .sd3_vae_encoder import SD3VAEEncoder |
|
|
|
from .sd_controlnet import SDControlNet |
|
from .sdxl_controlnet import SDXLControlNetUnion |
|
|
|
from .sd_motion import SDMotionModel |
|
from .sdxl_motion import SDXLMotionModel |
|
|
|
from .svd_image_encoder import SVDImageEncoder |
|
from .svd_unet import SVDUNet |
|
from .svd_vae_decoder import SVDVAEDecoder |
|
from .svd_vae_encoder import SVDVAEEncoder |
|
|
|
from .sd_ipadapter import SDIpAdapter, IpAdapterCLIPImageEmbedder |
|
from .sdxl_ipadapter import SDXLIpAdapter, IpAdapterXLCLIPImageEmbedder |
|
|
|
from .hunyuan_dit_text_encoder import HunyuanDiTCLIPTextEncoder, HunyuanDiTT5TextEncoder |
|
from .hunyuan_dit import HunyuanDiT |
|
from .hunyuan_video_vae_decoder import HunyuanVideoVAEDecoder |
|
from .hunyuan_video_vae_encoder import HunyuanVideoVAEEncoder |
|
|
|
from .flux_dit import FluxDiT |
|
from .flux_text_encoder import FluxTextEncoder2 |
|
from .flux_vae import FluxVAEEncoder, FluxVAEDecoder |
|
from .flux_ipadapter import FluxIpAdapter |
|
|
|
from .cog_vae import CogVAEEncoder, CogVAEDecoder |
|
from .cog_dit import CogDiT |
|
|
|
from ..extensions.RIFE import IFNet |
|
from ..extensions.ESRGAN import RRDBNet |
|
|
|
from ..configs.model_config import model_loader_configs, huggingface_model_loader_configs, patch_model_loader_configs |
|
from .utils import load_state_dict, init_weights_on_device, hash_state_dict_keys, split_state_dict_with_prefix |
|
|
|
|
|
def load_model_from_single_file(state_dict, model_names, model_classes, model_resource, torch_dtype, device): |
|
loaded_model_names, loaded_models = [], [] |
|
for model_name, model_class in zip(model_names, model_classes): |
|
print(f" model_name: {model_name} model_class: {model_class.__name__}") |
|
state_dict_converter = model_class.state_dict_converter() |
|
if model_resource == "civitai": |
|
state_dict_results = state_dict_converter.from_civitai(state_dict) |
|
elif model_resource == "diffusers": |
|
state_dict_results = state_dict_converter.from_diffusers(state_dict) |
|
if isinstance(state_dict_results, tuple): |
|
model_state_dict, extra_kwargs = state_dict_results |
|
print(f" This model is initialized with extra kwargs: {extra_kwargs}") |
|
else: |
|
model_state_dict, extra_kwargs = state_dict_results, {} |
|
torch_dtype = torch.float32 if extra_kwargs.get("upcast_to_float32", False) else torch_dtype |
|
with init_weights_on_device(): |
|
model = model_class(**extra_kwargs) |
|
if hasattr(model, "eval"): |
|
model = model.eval() |
|
model.load_state_dict(model_state_dict, assign=True) |
|
model = model.to(dtype=torch_dtype, device=device) |
|
loaded_model_names.append(model_name) |
|
loaded_models.append(model) |
|
return loaded_model_names, loaded_models |
|
|
|
|
|
def load_model_from_huggingface_folder(file_path, model_names, model_classes, torch_dtype, device): |
|
loaded_model_names, loaded_models = [], [] |
|
for model_name, model_class in zip(model_names, model_classes): |
|
if torch_dtype in [torch.float32, torch.float16, torch.bfloat16]: |
|
model = model_class.from_pretrained(file_path, torch_dtype=torch_dtype).eval() |
|
else: |
|
model = model_class.from_pretrained(file_path).eval().to(dtype=torch_dtype) |
|
if torch_dtype == torch.float16 and hasattr(model, "half"): |
|
model = model.half() |
|
try: |
|
model = model.to(device=device) |
|
except: |
|
pass |
|
loaded_model_names.append(model_name) |
|
loaded_models.append(model) |
|
return loaded_model_names, loaded_models |
|
|
|
|
|
def load_single_patch_model_from_single_file(state_dict, model_name, model_class, base_model, extra_kwargs, torch_dtype, device): |
|
print(f" model_name: {model_name} model_class: {model_class.__name__} extra_kwargs: {extra_kwargs}") |
|
base_state_dict = base_model.state_dict() |
|
base_model.to("cpu") |
|
del base_model |
|
model = model_class(**extra_kwargs) |
|
model.load_state_dict(base_state_dict, strict=False) |
|
model.load_state_dict(state_dict, strict=False) |
|
model.to(dtype=torch_dtype, device=device) |
|
return model |
|
|
|
|
|
def load_patch_model_from_single_file(state_dict, model_names, model_classes, extra_kwargs, model_manager, torch_dtype, device): |
|
loaded_model_names, loaded_models = [], [] |
|
for model_name, model_class in zip(model_names, model_classes): |
|
while True: |
|
for model_id in range(len(model_manager.model)): |
|
base_model_name = model_manager.model_name[model_id] |
|
if base_model_name == model_name: |
|
base_model_path = model_manager.model_path[model_id] |
|
base_model = model_manager.model[model_id] |
|
print(f" Adding patch model to {base_model_name} ({base_model_path})") |
|
patched_model = load_single_patch_model_from_single_file( |
|
state_dict, model_name, model_class, base_model, extra_kwargs, torch_dtype, device) |
|
loaded_model_names.append(base_model_name) |
|
loaded_models.append(patched_model) |
|
model_manager.model.pop(model_id) |
|
model_manager.model_path.pop(model_id) |
|
model_manager.model_name.pop(model_id) |
|
break |
|
else: |
|
break |
|
return loaded_model_names, loaded_models |
|
|
|
|
|
|
|
class ModelDetectorTemplate: |
|
def __init__(self): |
|
pass |
|
|
|
def match(self, file_path="", state_dict={}): |
|
return False |
|
|
|
def load(self, file_path="", state_dict={}, device="cuda", torch_dtype=torch.float16, **kwargs): |
|
return [], [] |
|
|
|
|
|
|
|
class ModelDetectorFromSingleFile: |
|
def __init__(self, model_loader_configs=[]): |
|
self.keys_hash_with_shape_dict = {} |
|
self.keys_hash_dict = {} |
|
for metadata in model_loader_configs: |
|
self.add_model_metadata(*metadata) |
|
|
|
|
|
def add_model_metadata(self, keys_hash, keys_hash_with_shape, model_names, model_classes, model_resource): |
|
self.keys_hash_with_shape_dict[keys_hash_with_shape] = (model_names, model_classes, model_resource) |
|
if keys_hash is not None: |
|
self.keys_hash_dict[keys_hash] = (model_names, model_classes, model_resource) |
|
|
|
|
|
def match(self, file_path="", state_dict={}): |
|
if isinstance(file_path, str) and os.path.isdir(file_path): |
|
return False |
|
if len(state_dict) == 0: |
|
state_dict = load_state_dict(file_path) |
|
keys_hash_with_shape = hash_state_dict_keys(state_dict, with_shape=True) |
|
if keys_hash_with_shape in self.keys_hash_with_shape_dict: |
|
return True |
|
keys_hash = hash_state_dict_keys(state_dict, with_shape=False) |
|
if keys_hash in self.keys_hash_dict: |
|
return True |
|
return False |
|
|
|
|
|
def load(self, file_path="", state_dict={}, device="cuda", torch_dtype=torch.float16, **kwargs): |
|
if len(state_dict) == 0: |
|
state_dict = load_state_dict(file_path) |
|
|
|
|
|
keys_hash_with_shape = hash_state_dict_keys(state_dict, with_shape=True) |
|
if keys_hash_with_shape in self.keys_hash_with_shape_dict: |
|
model_names, model_classes, model_resource = self.keys_hash_with_shape_dict[keys_hash_with_shape] |
|
loaded_model_names, loaded_models = load_model_from_single_file(state_dict, model_names, model_classes, model_resource, torch_dtype, device) |
|
return loaded_model_names, loaded_models |
|
|
|
|
|
|
|
keys_hash = hash_state_dict_keys(state_dict, with_shape=False) |
|
if keys_hash in self.keys_hash_dict: |
|
model_names, model_classes, model_resource = self.keys_hash_dict[keys_hash] |
|
loaded_model_names, loaded_models = load_model_from_single_file(state_dict, model_names, model_classes, model_resource, torch_dtype, device) |
|
return loaded_model_names, loaded_models |
|
|
|
return loaded_model_names, loaded_models |
|
|
|
|
|
|
|
class ModelDetectorFromSplitedSingleFile(ModelDetectorFromSingleFile): |
|
def __init__(self, model_loader_configs=[]): |
|
super().__init__(model_loader_configs) |
|
|
|
|
|
def match(self, file_path="", state_dict={}): |
|
if isinstance(file_path, str) and os.path.isdir(file_path): |
|
return False |
|
if len(state_dict) == 0: |
|
state_dict = load_state_dict(file_path) |
|
splited_state_dict = split_state_dict_with_prefix(state_dict) |
|
for sub_state_dict in splited_state_dict: |
|
if super().match(file_path, sub_state_dict): |
|
return True |
|
return False |
|
|
|
|
|
def load(self, file_path="", state_dict={}, device="cuda", torch_dtype=torch.float16, **kwargs): |
|
|
|
splited_state_dict = split_state_dict_with_prefix(state_dict) |
|
valid_state_dict = {} |
|
for sub_state_dict in splited_state_dict: |
|
if super().match(file_path, sub_state_dict): |
|
valid_state_dict.update(sub_state_dict) |
|
if super().match(file_path, valid_state_dict): |
|
loaded_model_names, loaded_models = super().load(file_path, valid_state_dict, device, torch_dtype) |
|
else: |
|
loaded_model_names, loaded_models = [], [] |
|
for sub_state_dict in splited_state_dict: |
|
if super().match(file_path, sub_state_dict): |
|
loaded_model_names_, loaded_models_ = super().load(file_path, valid_state_dict, device, torch_dtype) |
|
loaded_model_names += loaded_model_names_ |
|
loaded_models += loaded_models_ |
|
return loaded_model_names, loaded_models |
|
|
|
|
|
|
|
class ModelDetectorFromHuggingfaceFolder: |
|
def __init__(self, model_loader_configs=[]): |
|
self.architecture_dict = {} |
|
for metadata in model_loader_configs: |
|
self.add_model_metadata(*metadata) |
|
|
|
|
|
def add_model_metadata(self, architecture, huggingface_lib, model_name, redirected_architecture): |
|
self.architecture_dict[architecture] = (huggingface_lib, model_name, redirected_architecture) |
|
|
|
|
|
def match(self, file_path="", state_dict={}): |
|
if not isinstance(file_path, str) or os.path.isfile(file_path): |
|
return False |
|
file_list = os.listdir(file_path) |
|
if "config.json" not in file_list: |
|
return False |
|
with open(os.path.join(file_path, "config.json"), "r") as f: |
|
config = json.load(f) |
|
if "architectures" not in config and "_class_name" not in config: |
|
return False |
|
return True |
|
|
|
|
|
def load(self, file_path="", state_dict={}, device="cuda", torch_dtype=torch.float16, **kwargs): |
|
with open(os.path.join(file_path, "config.json"), "r") as f: |
|
config = json.load(f) |
|
loaded_model_names, loaded_models = [], [] |
|
architectures = config["architectures"] if "architectures" in config else [config["_class_name"]] |
|
for architecture in architectures: |
|
huggingface_lib, model_name, redirected_architecture = self.architecture_dict[architecture] |
|
if redirected_architecture is not None: |
|
architecture = redirected_architecture |
|
model_class = importlib.import_module(huggingface_lib).__getattribute__(architecture) |
|
loaded_model_names_, loaded_models_ = load_model_from_huggingface_folder(file_path, [model_name], [model_class], torch_dtype, device) |
|
loaded_model_names += loaded_model_names_ |
|
loaded_models += loaded_models_ |
|
return loaded_model_names, loaded_models |
|
|
|
|
|
|
|
class ModelDetectorFromPatchedSingleFile: |
|
def __init__(self, model_loader_configs=[]): |
|
self.keys_hash_with_shape_dict = {} |
|
for metadata in model_loader_configs: |
|
self.add_model_metadata(*metadata) |
|
|
|
|
|
def add_model_metadata(self, keys_hash_with_shape, model_name, model_class, extra_kwargs): |
|
self.keys_hash_with_shape_dict[keys_hash_with_shape] = (model_name, model_class, extra_kwargs) |
|
|
|
|
|
def match(self, file_path="", state_dict={}): |
|
if not isinstance(file_path, str) or os.path.isdir(file_path): |
|
return False |
|
if len(state_dict) == 0: |
|
state_dict = load_state_dict(file_path) |
|
keys_hash_with_shape = hash_state_dict_keys(state_dict, with_shape=True) |
|
if keys_hash_with_shape in self.keys_hash_with_shape_dict: |
|
return True |
|
return False |
|
|
|
|
|
def load(self, file_path="", state_dict={}, device="cuda", torch_dtype=torch.float16, model_manager=None, **kwargs): |
|
if len(state_dict) == 0: |
|
state_dict = load_state_dict(file_path) |
|
|
|
|
|
loaded_model_names, loaded_models = [], [] |
|
keys_hash_with_shape = hash_state_dict_keys(state_dict, with_shape=True) |
|
if keys_hash_with_shape in self.keys_hash_with_shape_dict: |
|
model_names, model_classes, extra_kwargs = self.keys_hash_with_shape_dict[keys_hash_with_shape] |
|
loaded_model_names_, loaded_models_ = load_patch_model_from_single_file( |
|
state_dict, model_names, model_classes, extra_kwargs, model_manager, torch_dtype, device) |
|
loaded_model_names += loaded_model_names_ |
|
loaded_models += loaded_models_ |
|
return loaded_model_names, loaded_models |
|
|
|
|
|
|
|
class ModelManager: |
|
def __init__( |
|
self, |
|
torch_dtype=torch.float16, |
|
device="cuda", |
|
model_id_list: List[Preset_model_id] = [], |
|
downloading_priority: List[Preset_model_website] = ["ModelScope", "HuggingFace"], |
|
file_path_list: List[str] = [], |
|
): |
|
self.torch_dtype = torch_dtype |
|
self.device = device |
|
self.model = [] |
|
self.model_path = [] |
|
self.model_name = [] |
|
downloaded_files = download_models(model_id_list, downloading_priority) if len(model_id_list) > 0 else [] |
|
self.model_detector = [ |
|
ModelDetectorFromSingleFile(model_loader_configs), |
|
ModelDetectorFromSplitedSingleFile(model_loader_configs), |
|
ModelDetectorFromHuggingfaceFolder(huggingface_model_loader_configs), |
|
ModelDetectorFromPatchedSingleFile(patch_model_loader_configs), |
|
] |
|
self.load_models(downloaded_files + file_path_list) |
|
|
|
|
|
def load_model_from_single_file(self, file_path="", state_dict={}, model_names=[], model_classes=[], model_resource=None): |
|
print(f"Loading models from file: {file_path}") |
|
if len(state_dict) == 0: |
|
state_dict = load_state_dict(file_path) |
|
model_names, models = load_model_from_single_file(state_dict, model_names, model_classes, model_resource, self.torch_dtype, self.device) |
|
for model_name, model in zip(model_names, models): |
|
self.model.append(model) |
|
self.model_path.append(file_path) |
|
self.model_name.append(model_name) |
|
print(f" The following models are loaded: {model_names}.") |
|
|
|
|
|
def load_model_from_huggingface_folder(self, file_path="", model_names=[], model_classes=[]): |
|
print(f"Loading models from folder: {file_path}") |
|
model_names, models = load_model_from_huggingface_folder(file_path, model_names, model_classes, self.torch_dtype, self.device) |
|
for model_name, model in zip(model_names, models): |
|
self.model.append(model) |
|
self.model_path.append(file_path) |
|
self.model_name.append(model_name) |
|
print(f" The following models are loaded: {model_names}.") |
|
|
|
|
|
def load_patch_model_from_single_file(self, file_path="", state_dict={}, model_names=[], model_classes=[], extra_kwargs={}): |
|
print(f"Loading patch models from file: {file_path}") |
|
model_names, models = load_patch_model_from_single_file( |
|
state_dict, model_names, model_classes, extra_kwargs, self, self.torch_dtype, self.device) |
|
for model_name, model in zip(model_names, models): |
|
self.model.append(model) |
|
self.model_path.append(file_path) |
|
self.model_name.append(model_name) |
|
print(f" The following patched models are loaded: {model_names}.") |
|
|
|
|
|
def load_lora(self, file_path="", state_dict={}, lora_alpha=1.0): |
|
if isinstance(file_path, list): |
|
for file_path_ in file_path: |
|
self.load_lora(file_path_, state_dict=state_dict, lora_alpha=lora_alpha) |
|
else: |
|
print(f"Loading LoRA models from file: {file_path}") |
|
if len(state_dict) == 0: |
|
state_dict = load_state_dict(file_path) |
|
for model_name, model, model_path in zip(self.model_name, self.model, self.model_path): |
|
for lora in get_lora_loaders(): |
|
match_results = lora.match(model, state_dict) |
|
if match_results is not None: |
|
print(f" Adding LoRA to {model_name} ({model_path}).") |
|
lora_prefix, model_resource = match_results |
|
lora.load(model, state_dict, lora_prefix, alpha=lora_alpha, model_resource=model_resource) |
|
break |
|
|
|
|
|
def load_model(self, file_path, model_names=None, device=None, torch_dtype=None): |
|
print(f"Loading models from: {file_path}") |
|
if device is None: device = self.device |
|
if torch_dtype is None: torch_dtype = self.torch_dtype |
|
if isinstance(file_path, list): |
|
state_dict = {} |
|
for path in file_path: |
|
state_dict.update(load_state_dict(path)) |
|
elif os.path.isfile(file_path): |
|
state_dict = load_state_dict(file_path) |
|
else: |
|
state_dict = None |
|
for model_detector in self.model_detector: |
|
if model_detector.match(file_path, state_dict): |
|
model_names, models = model_detector.load( |
|
file_path, state_dict, |
|
device=device, torch_dtype=torch_dtype, |
|
allowed_model_names=model_names, model_manager=self |
|
) |
|
for model_name, model in zip(model_names, models): |
|
self.model.append(model) |
|
self.model_path.append(file_path) |
|
self.model_name.append(model_name) |
|
print(f" The following models are loaded: {model_names}.") |
|
break |
|
else: |
|
print(f" We cannot detect the model type. No models are loaded.") |
|
|
|
|
|
def load_models(self, file_path_list, model_names=None, device=None, torch_dtype=None): |
|
for file_path in file_path_list: |
|
self.load_model(file_path, model_names, device=device, torch_dtype=torch_dtype) |
|
|
|
|
|
def fetch_model(self, model_name, file_path=None, require_model_path=False): |
|
fetched_models = [] |
|
fetched_model_paths = [] |
|
for model, model_path, model_name_ in zip(self.model, self.model_path, self.model_name): |
|
if file_path is not None and file_path != model_path: |
|
continue |
|
if model_name == model_name_: |
|
fetched_models.append(model) |
|
fetched_model_paths.append(model_path) |
|
if len(fetched_models) == 0: |
|
print(f"No {model_name} models available.") |
|
return None |
|
if len(fetched_models) == 1: |
|
print(f"Using {model_name} from {fetched_model_paths[0]}.") |
|
else: |
|
print(f"More than one {model_name} models are loaded in model manager: {fetched_model_paths}. Using {model_name} from {fetched_model_paths[0]}.") |
|
if require_model_path: |
|
return fetched_models[0], fetched_model_paths[0] |
|
else: |
|
return fetched_models[0] |
|
|
|
|
|
def to(self, device): |
|
for model in self.model: |
|
model.to(device) |
|
|
|
|