|
from .svd_image_encoder import SVDImageEncoder |
|
from transformers import CLIPImageProcessor |
|
import torch |
|
|
|
|
|
class IpAdapterXLCLIPImageEmbedder(SVDImageEncoder): |
|
def __init__(self): |
|
super().__init__(embed_dim=1664, encoder_intermediate_size=8192, projection_dim=1280, num_encoder_layers=48, num_heads=16, head_dim=104) |
|
self.image_processor = CLIPImageProcessor() |
|
|
|
def forward(self, image): |
|
pixel_values = self.image_processor(images=image, return_tensors="pt").pixel_values |
|
pixel_values = pixel_values.to(device=self.embeddings.class_embedding.device, dtype=self.embeddings.class_embedding.dtype) |
|
return super().forward(pixel_values) |
|
|
|
|
|
class IpAdapterImageProjModel(torch.nn.Module): |
|
def __init__(self, cross_attention_dim=2048, clip_embeddings_dim=1280, clip_extra_context_tokens=4): |
|
super().__init__() |
|
self.cross_attention_dim = cross_attention_dim |
|
self.clip_extra_context_tokens = clip_extra_context_tokens |
|
self.proj = torch.nn.Linear(clip_embeddings_dim, self.clip_extra_context_tokens * cross_attention_dim) |
|
self.norm = torch.nn.LayerNorm(cross_attention_dim) |
|
|
|
def forward(self, image_embeds): |
|
clip_extra_context_tokens = self.proj(image_embeds).reshape(-1, self.clip_extra_context_tokens, self.cross_attention_dim) |
|
clip_extra_context_tokens = self.norm(clip_extra_context_tokens) |
|
return clip_extra_context_tokens |
|
|
|
|
|
class IpAdapterModule(torch.nn.Module): |
|
def __init__(self, input_dim, output_dim): |
|
super().__init__() |
|
self.to_k_ip = torch.nn.Linear(input_dim, output_dim, bias=False) |
|
self.to_v_ip = torch.nn.Linear(input_dim, output_dim, bias=False) |
|
|
|
def forward(self, hidden_states): |
|
ip_k = self.to_k_ip(hidden_states) |
|
ip_v = self.to_v_ip(hidden_states) |
|
return ip_k, ip_v |
|
|
|
|
|
class SDXLIpAdapter(torch.nn.Module): |
|
def __init__(self): |
|
super().__init__() |
|
shape_list = [(2048, 640)] * 4 + [(2048, 1280)] * 50 + [(2048, 640)] * 6 + [(2048, 1280)] * 10 |
|
self.ipadapter_modules = torch.nn.ModuleList([IpAdapterModule(*shape) for shape in shape_list]) |
|
self.image_proj = IpAdapterImageProjModel() |
|
self.set_full_adapter() |
|
|
|
def set_full_adapter(self): |
|
map_list = sum([ |
|
[(7, i) for i in range(2)], |
|
[(10, i) for i in range(2)], |
|
[(15, i) for i in range(10)], |
|
[(18, i) for i in range(10)], |
|
[(25, i) for i in range(10)], |
|
[(28, i) for i in range(10)], |
|
[(31, i) for i in range(10)], |
|
[(35, i) for i in range(2)], |
|
[(38, i) for i in range(2)], |
|
[(41, i) for i in range(2)], |
|
[(21, i) for i in range(10)], |
|
], []) |
|
self.call_block_id = {i: j for j, i in enumerate(map_list)} |
|
|
|
def set_less_adapter(self): |
|
map_list = sum([ |
|
[(7, i) for i in range(2)], |
|
[(10, i) for i in range(2)], |
|
[(15, i) for i in range(10)], |
|
[(18, i) for i in range(10)], |
|
[(25, i) for i in range(10)], |
|
[(28, i) for i in range(10)], |
|
[(31, i) for i in range(10)], |
|
[(35, i) for i in range(2)], |
|
[(38, i) for i in range(2)], |
|
[(41, i) for i in range(2)], |
|
[(21, i) for i in range(10)], |
|
], []) |
|
self.call_block_id = {i: j for j, i in enumerate(map_list) if j>=34 and j<44} |
|
|
|
def forward(self, hidden_states, scale=1.0): |
|
hidden_states = self.image_proj(hidden_states) |
|
hidden_states = hidden_states.view(1, -1, hidden_states.shape[-1]) |
|
ip_kv_dict = {} |
|
for (block_id, transformer_id) in self.call_block_id: |
|
ipadapter_id = self.call_block_id[(block_id, transformer_id)] |
|
ip_k, ip_v = self.ipadapter_modules[ipadapter_id](hidden_states) |
|
if block_id not in ip_kv_dict: |
|
ip_kv_dict[block_id] = {} |
|
ip_kv_dict[block_id][transformer_id] = { |
|
"ip_k": ip_k, |
|
"ip_v": ip_v, |
|
"scale": scale |
|
} |
|
return ip_kv_dict |
|
|
|
@staticmethod |
|
def state_dict_converter(): |
|
return SDXLIpAdapterStateDictConverter() |
|
|
|
|
|
class SDXLIpAdapterStateDictConverter: |
|
def __init__(self): |
|
pass |
|
|
|
def from_diffusers(self, state_dict): |
|
state_dict_ = {} |
|
for name in state_dict["ip_adapter"]: |
|
names = name.split(".") |
|
layer_id = str(int(names[0]) // 2) |
|
name_ = ".".join(["ipadapter_modules"] + [layer_id] + names[1:]) |
|
state_dict_[name_] = state_dict["ip_adapter"][name] |
|
for name in state_dict["image_proj"]: |
|
name_ = "image_proj." + name |
|
state_dict_[name_] = state_dict["image_proj"][name] |
|
return state_dict_ |
|
|
|
def from_civitai(self, state_dict): |
|
return self.from_diffusers(state_dict) |
|
|
|
|