|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Dict, Optional, Tuple, Union, List |
|
import torch, math |
|
from torch import nn |
|
from einops import rearrange, repeat |
|
from tqdm import tqdm |
|
|
|
|
|
class RMSNorm(nn.Module): |
|
def __init__( |
|
self, |
|
dim: int, |
|
elementwise_affine=True, |
|
eps: float = 1e-6, |
|
device=None, |
|
dtype=None, |
|
): |
|
""" |
|
Initialize the RMSNorm normalization layer. |
|
|
|
Args: |
|
dim (int): The dimension of the input tensor. |
|
eps (float, optional): A small value added to the denominator for numerical stability. Default is 1e-6. |
|
|
|
Attributes: |
|
eps (float): A small value added to the denominator for numerical stability. |
|
weight (nn.Parameter): Learnable scaling parameter. |
|
|
|
""" |
|
factory_kwargs = {"device": device, "dtype": dtype} |
|
super().__init__() |
|
self.eps = eps |
|
if elementwise_affine: |
|
self.weight = nn.Parameter(torch.ones(dim, **factory_kwargs)) |
|
|
|
def _norm(self, x): |
|
""" |
|
Apply the RMSNorm normalization to the input tensor. |
|
|
|
Args: |
|
x (torch.Tensor): The input tensor. |
|
|
|
Returns: |
|
torch.Tensor: The normalized tensor. |
|
|
|
""" |
|
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) |
|
|
|
def forward(self, x): |
|
""" |
|
Forward pass through the RMSNorm layer. |
|
|
|
Args: |
|
x (torch.Tensor): The input tensor. |
|
|
|
Returns: |
|
torch.Tensor: The output tensor after applying RMSNorm. |
|
|
|
""" |
|
output = self._norm(x.float()).type_as(x) |
|
if hasattr(self, "weight"): |
|
output = output * self.weight |
|
return output |
|
|
|
|
|
ACTIVATION_FUNCTIONS = { |
|
"swish": nn.SiLU(), |
|
"silu": nn.SiLU(), |
|
"mish": nn.Mish(), |
|
"gelu": nn.GELU(), |
|
"relu": nn.ReLU(), |
|
} |
|
|
|
|
|
def get_activation(act_fn: str) -> nn.Module: |
|
"""Helper function to get activation function from string. |
|
|
|
Args: |
|
act_fn (str): Name of activation function. |
|
|
|
Returns: |
|
nn.Module: Activation function. |
|
""" |
|
|
|
act_fn = act_fn.lower() |
|
if act_fn in ACTIVATION_FUNCTIONS: |
|
return ACTIVATION_FUNCTIONS[act_fn] |
|
else: |
|
raise ValueError(f"Unsupported activation function: {act_fn}") |
|
|
|
|
|
def get_timestep_embedding( |
|
timesteps: torch.Tensor, |
|
embedding_dim: int, |
|
flip_sin_to_cos: bool = False, |
|
downscale_freq_shift: float = 1, |
|
scale: float = 1, |
|
max_period: int = 10000, |
|
): |
|
""" |
|
This matches the implementation in Denoising Diffusion Probabilistic Models: Create sinusoidal timestep embeddings. |
|
|
|
:param timesteps: a 1-D Tensor of N indices, one per batch element. |
|
These may be fractional. |
|
:param embedding_dim: the dimension of the output. :param max_period: controls the minimum frequency of the |
|
embeddings. :return: an [N x dim] Tensor of positional embeddings. |
|
""" |
|
assert len(timesteps.shape) == 1, "Timesteps should be a 1d-array" |
|
|
|
half_dim = embedding_dim // 2 |
|
exponent = -math.log(max_period) * torch.arange( |
|
start=0, end=half_dim, dtype=torch.float32, device=timesteps.device |
|
) |
|
exponent = exponent / (half_dim - downscale_freq_shift) |
|
|
|
emb = torch.exp(exponent) |
|
emb = timesteps[:, None].float() * emb[None, :] |
|
|
|
|
|
emb = scale * emb |
|
|
|
|
|
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=-1) |
|
|
|
|
|
if flip_sin_to_cos: |
|
emb = torch.cat([emb[:, half_dim:], emb[:, :half_dim]], dim=-1) |
|
|
|
|
|
if embedding_dim % 2 == 1: |
|
emb = torch.nn.functional.pad(emb, (0, 1, 0, 0)) |
|
return emb |
|
|
|
|
|
class Timesteps(nn.Module): |
|
def __init__(self, num_channels: int, flip_sin_to_cos: bool, downscale_freq_shift: float): |
|
super().__init__() |
|
self.num_channels = num_channels |
|
self.flip_sin_to_cos = flip_sin_to_cos |
|
self.downscale_freq_shift = downscale_freq_shift |
|
|
|
def forward(self, timesteps): |
|
t_emb = get_timestep_embedding( |
|
timesteps, |
|
self.num_channels, |
|
flip_sin_to_cos=self.flip_sin_to_cos, |
|
downscale_freq_shift=self.downscale_freq_shift, |
|
) |
|
return t_emb |
|
|
|
|
|
class TimestepEmbedding(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels: int, |
|
time_embed_dim: int, |
|
act_fn: str = "silu", |
|
out_dim: int = None, |
|
post_act_fn: Optional[str] = None, |
|
cond_proj_dim=None, |
|
sample_proj_bias=True |
|
): |
|
super().__init__() |
|
linear_cls = nn.Linear |
|
|
|
self.linear_1 = linear_cls( |
|
in_channels, |
|
time_embed_dim, |
|
bias=sample_proj_bias, |
|
) |
|
|
|
if cond_proj_dim is not None: |
|
self.cond_proj = linear_cls( |
|
cond_proj_dim, |
|
in_channels, |
|
bias=False, |
|
) |
|
else: |
|
self.cond_proj = None |
|
|
|
self.act = get_activation(act_fn) |
|
|
|
if out_dim is not None: |
|
time_embed_dim_out = out_dim |
|
else: |
|
time_embed_dim_out = time_embed_dim |
|
|
|
self.linear_2 = linear_cls( |
|
time_embed_dim, |
|
time_embed_dim_out, |
|
bias=sample_proj_bias, |
|
) |
|
|
|
if post_act_fn is None: |
|
self.post_act = None |
|
else: |
|
self.post_act = get_activation(post_act_fn) |
|
|
|
def forward(self, sample, condition=None): |
|
if condition is not None: |
|
sample = sample + self.cond_proj(condition) |
|
sample = self.linear_1(sample) |
|
|
|
if self.act is not None: |
|
sample = self.act(sample) |
|
|
|
sample = self.linear_2(sample) |
|
|
|
if self.post_act is not None: |
|
sample = self.post_act(sample) |
|
return sample |
|
|
|
|
|
class PixArtAlphaCombinedTimestepSizeEmbeddings(nn.Module): |
|
def __init__(self, embedding_dim, size_emb_dim, use_additional_conditions: bool = False): |
|
super().__init__() |
|
|
|
self.outdim = size_emb_dim |
|
self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0) |
|
self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim) |
|
|
|
self.use_additional_conditions = use_additional_conditions |
|
if self.use_additional_conditions: |
|
self.additional_condition_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0) |
|
self.resolution_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=size_emb_dim) |
|
self.nframe_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim) |
|
self.fps_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim) |
|
|
|
def forward(self, timestep, resolution=None, nframe=None, fps=None): |
|
hidden_dtype = timestep.dtype |
|
|
|
timesteps_proj = self.time_proj(timestep) |
|
timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=hidden_dtype)) |
|
|
|
if self.use_additional_conditions: |
|
batch_size = timestep.shape[0] |
|
resolution_emb = self.additional_condition_proj(resolution.flatten()).to(hidden_dtype) |
|
resolution_emb = self.resolution_embedder(resolution_emb).reshape(batch_size, -1) |
|
nframe_emb = self.additional_condition_proj(nframe.flatten()).to(hidden_dtype) |
|
nframe_emb = self.nframe_embedder(nframe_emb).reshape(batch_size, -1) |
|
conditioning = timesteps_emb + resolution_emb + nframe_emb |
|
|
|
if fps is not None: |
|
fps_emb = self.additional_condition_proj(fps.flatten()).to(hidden_dtype) |
|
fps_emb = self.fps_embedder(fps_emb).reshape(batch_size, -1) |
|
conditioning = conditioning + fps_emb |
|
else: |
|
conditioning = timesteps_emb |
|
|
|
return conditioning |
|
|
|
|
|
class AdaLayerNormSingle(nn.Module): |
|
r""" |
|
Norm layer adaptive layer norm single (adaLN-single). |
|
|
|
As proposed in PixArt-Alpha (see: https://arxiv.org/abs/2310.00426; Section 2.3). |
|
|
|
Parameters: |
|
embedding_dim (`int`): The size of each embedding vector. |
|
use_additional_conditions (`bool`): To use additional conditions for normalization or not. |
|
""" |
|
def __init__(self, embedding_dim: int, use_additional_conditions: bool = False, time_step_rescale=1000): |
|
super().__init__() |
|
|
|
self.emb = PixArtAlphaCombinedTimestepSizeEmbeddings( |
|
embedding_dim, size_emb_dim=embedding_dim // 2, use_additional_conditions=use_additional_conditions |
|
) |
|
|
|
self.silu = nn.SiLU() |
|
self.linear = nn.Linear(embedding_dim, 6 * embedding_dim, bias=True) |
|
|
|
self.time_step_rescale = time_step_rescale |
|
|
|
def forward( |
|
self, |
|
timestep: torch.Tensor, |
|
added_cond_kwargs: Dict[str, torch.Tensor] = None, |
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: |
|
embedded_timestep = self.emb(timestep*self.time_step_rescale, **added_cond_kwargs) |
|
|
|
out = self.linear(self.silu(embedded_timestep)) |
|
|
|
return out, embedded_timestep |
|
|
|
|
|
class PixArtAlphaTextProjection(nn.Module): |
|
""" |
|
Projects caption embeddings. Also handles dropout for classifier-free guidance. |
|
|
|
Adapted from https://github.com/PixArt-alpha/PixArt-alpha/blob/master/diffusion/model/nets/PixArt_blocks.py |
|
""" |
|
|
|
def __init__(self, in_features, hidden_size): |
|
super().__init__() |
|
self.linear_1 = nn.Linear( |
|
in_features, |
|
hidden_size, |
|
bias=True, |
|
) |
|
self.act_1 = nn.GELU(approximate="tanh") |
|
self.linear_2 = nn.Linear( |
|
hidden_size, |
|
hidden_size, |
|
bias=True, |
|
) |
|
|
|
def forward(self, caption): |
|
hidden_states = self.linear_1(caption) |
|
hidden_states = self.act_1(hidden_states) |
|
hidden_states = self.linear_2(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class Attention(nn.Module): |
|
def __init__(self): |
|
super().__init__() |
|
|
|
def attn_processor(self, attn_type): |
|
if attn_type == 'torch': |
|
return self.torch_attn_func |
|
elif attn_type == 'parallel': |
|
return self.parallel_attn_func |
|
else: |
|
raise Exception('Not supported attention type...') |
|
|
|
def torch_attn_func( |
|
self, |
|
q, |
|
k, |
|
v, |
|
attn_mask=None, |
|
causal=False, |
|
drop_rate=0.0, |
|
**kwargs |
|
): |
|
|
|
if attn_mask is not None and attn_mask.dtype != torch.bool: |
|
attn_mask = attn_mask.to(q.dtype) |
|
|
|
if attn_mask is not None and attn_mask.ndim == 3: |
|
n_heads = q.shape[2] |
|
attn_mask = attn_mask.unsqueeze(1).repeat(1, n_heads, 1, 1) |
|
|
|
q, k, v = map(lambda x: rearrange(x, 'b s h d -> b h s d'), (q, k, v)) |
|
if attn_mask is not None: |
|
attn_mask = attn_mask.to(q.device) |
|
x = torch.nn.functional.scaled_dot_product_attention( |
|
q, k, v, attn_mask=attn_mask, dropout_p=drop_rate, is_causal=causal |
|
) |
|
x = rearrange(x, 'b h s d -> b s h d') |
|
return x |
|
|
|
|
|
class RoPE1D: |
|
def __init__(self, freq=1e4, F0=1.0, scaling_factor=1.0): |
|
self.base = freq |
|
self.F0 = F0 |
|
self.scaling_factor = scaling_factor |
|
self.cache = {} |
|
|
|
def get_cos_sin(self, D, seq_len, device, dtype): |
|
if (D, seq_len, device, dtype) not in self.cache: |
|
inv_freq = 1.0 / (self.base ** (torch.arange(0, D, 2).float().to(device) / D)) |
|
t = torch.arange(seq_len, device=device, dtype=inv_freq.dtype) |
|
freqs = torch.einsum("i,j->ij", t, inv_freq).to(dtype) |
|
freqs = torch.cat((freqs, freqs), dim=-1) |
|
cos = freqs.cos() |
|
sin = freqs.sin() |
|
self.cache[D, seq_len, device, dtype] = (cos, sin) |
|
return self.cache[D, seq_len, device, dtype] |
|
|
|
@staticmethod |
|
def rotate_half(x): |
|
x1, x2 = x[..., : x.shape[-1] // 2], x[..., x.shape[-1] // 2:] |
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
def apply_rope1d(self, tokens, pos1d, cos, sin): |
|
assert pos1d.ndim == 2 |
|
cos = torch.nn.functional.embedding(pos1d, cos)[:, :, None, :] |
|
sin = torch.nn.functional.embedding(pos1d, sin)[:, :, None, :] |
|
return (tokens * cos) + (self.rotate_half(tokens) * sin) |
|
|
|
def __call__(self, tokens, positions): |
|
""" |
|
input: |
|
* tokens: batch_size x ntokens x nheads x dim |
|
* positions: batch_size x ntokens (t position of each token) |
|
output: |
|
* tokens after applying RoPE2D (batch_size x ntokens x nheads x dim) |
|
""" |
|
D = tokens.size(3) |
|
assert positions.ndim == 2 |
|
cos, sin = self.get_cos_sin(D, int(positions.max()) + 1, tokens.device, tokens.dtype) |
|
tokens = self.apply_rope1d(tokens, positions, cos, sin) |
|
return tokens |
|
|
|
|
|
class RoPE3D(RoPE1D): |
|
def __init__(self, freq=1e4, F0=1.0, scaling_factor=1.0): |
|
super(RoPE3D, self).__init__(freq, F0, scaling_factor) |
|
self.position_cache = {} |
|
|
|
def get_mesh_3d(self, rope_positions, bsz): |
|
f, h, w = rope_positions |
|
|
|
if f"{f}-{h}-{w}" not in self.position_cache: |
|
x = torch.arange(f, device='cpu') |
|
y = torch.arange(h, device='cpu') |
|
z = torch.arange(w, device='cpu') |
|
self.position_cache[f"{f}-{h}-{w}"] = torch.cartesian_prod(x, y, z).view(1, f*h*w, 3).expand(bsz, -1, 3) |
|
return self.position_cache[f"{f}-{h}-{w}"] |
|
|
|
def __call__(self, tokens, rope_positions, ch_split, parallel=False): |
|
""" |
|
input: |
|
* tokens: batch_size x ntokens x nheads x dim |
|
* rope_positions: list of (f, h, w) |
|
output: |
|
* tokens after applying RoPE2D (batch_size x ntokens x nheads x dim) |
|
""" |
|
assert sum(ch_split) == tokens.size(-1); |
|
|
|
mesh_grid = self.get_mesh_3d(rope_positions, bsz=tokens.shape[0]) |
|
out = [] |
|
for i, (D, x) in enumerate(zip(ch_split, torch.split(tokens, ch_split, dim=-1))): |
|
cos, sin = self.get_cos_sin(D, int(mesh_grid.max()) + 1, tokens.device, tokens.dtype) |
|
|
|
if parallel: |
|
pass |
|
else: |
|
mesh = mesh_grid[:, :, i].clone() |
|
x = self.apply_rope1d(x, mesh.to(tokens.device), cos, sin) |
|
out.append(x) |
|
|
|
tokens = torch.cat(out, dim=-1) |
|
return tokens |
|
|
|
|
|
class SelfAttention(Attention): |
|
def __init__(self, hidden_dim, head_dim, bias=False, with_rope=True, with_qk_norm=True, attn_type='torch'): |
|
super().__init__() |
|
self.head_dim = head_dim |
|
self.n_heads = hidden_dim // head_dim |
|
|
|
self.wqkv = nn.Linear(hidden_dim, hidden_dim*3, bias=bias) |
|
self.wo = nn.Linear(hidden_dim, hidden_dim, bias=bias) |
|
|
|
self.with_rope = with_rope |
|
self.with_qk_norm = with_qk_norm |
|
if self.with_qk_norm: |
|
self.q_norm = RMSNorm(head_dim, elementwise_affine=True) |
|
self.k_norm = RMSNorm(head_dim, elementwise_affine=True) |
|
|
|
if self.with_rope: |
|
self.rope_3d = RoPE3D(freq=1e4, F0=1.0, scaling_factor=1.0) |
|
self.rope_ch_split = [64, 32, 32] |
|
|
|
self.core_attention = self.attn_processor(attn_type=attn_type) |
|
self.parallel = attn_type=='parallel' |
|
|
|
def apply_rope3d(self, x, fhw_positions, rope_ch_split, parallel=True): |
|
x = self.rope_3d(x, fhw_positions, rope_ch_split, parallel) |
|
return x |
|
|
|
def forward( |
|
self, |
|
x, |
|
cu_seqlens=None, |
|
max_seqlen=None, |
|
rope_positions=None, |
|
attn_mask=None |
|
): |
|
xqkv = self.wqkv(x) |
|
xqkv = xqkv.view(*x.shape[:-1], self.n_heads, 3*self.head_dim) |
|
|
|
xq, xk, xv = torch.split(xqkv, [self.head_dim]*3, dim=-1) |
|
|
|
if self.with_qk_norm: |
|
xq = self.q_norm(xq) |
|
xk = self.k_norm(xk) |
|
|
|
if self.with_rope: |
|
xq = self.apply_rope3d(xq, rope_positions, self.rope_ch_split, parallel=self.parallel) |
|
xk = self.apply_rope3d(xk, rope_positions, self.rope_ch_split, parallel=self.parallel) |
|
|
|
output = self.core_attention( |
|
xq, |
|
xk, |
|
xv, |
|
cu_seqlens=cu_seqlens, |
|
max_seqlen=max_seqlen, |
|
attn_mask=attn_mask |
|
) |
|
output = rearrange(output, 'b s h d -> b s (h d)') |
|
output = self.wo(output) |
|
|
|
return output |
|
|
|
|
|
class CrossAttention(Attention): |
|
def __init__(self, hidden_dim, head_dim, bias=False, with_qk_norm=True, attn_type='torch'): |
|
super().__init__() |
|
self.head_dim = head_dim |
|
self.n_heads = hidden_dim // head_dim |
|
|
|
self.wq = nn.Linear(hidden_dim, hidden_dim, bias=bias) |
|
self.wkv = nn.Linear(hidden_dim, hidden_dim*2, bias=bias) |
|
self.wo = nn.Linear(hidden_dim, hidden_dim, bias=bias) |
|
|
|
self.with_qk_norm = with_qk_norm |
|
if self.with_qk_norm: |
|
self.q_norm = RMSNorm(head_dim, elementwise_affine=True) |
|
self.k_norm = RMSNorm(head_dim, elementwise_affine=True) |
|
|
|
self.core_attention = self.attn_processor(attn_type=attn_type) |
|
|
|
def forward( |
|
self, |
|
x: torch.Tensor, |
|
encoder_hidden_states: torch.Tensor, |
|
attn_mask=None |
|
): |
|
xq = self.wq(x) |
|
xq = xq.view(*xq.shape[:-1], self.n_heads, self.head_dim) |
|
|
|
xkv = self.wkv(encoder_hidden_states) |
|
xkv = xkv.view(*xkv.shape[:-1], self.n_heads, 2*self.head_dim) |
|
|
|
xk, xv = torch.split(xkv, [self.head_dim]*2, dim=-1) |
|
|
|
if self.with_qk_norm: |
|
xq = self.q_norm(xq) |
|
xk = self.k_norm(xk) |
|
|
|
output = self.core_attention( |
|
xq, |
|
xk, |
|
xv, |
|
attn_mask=attn_mask |
|
) |
|
|
|
output = rearrange(output, 'b s h d -> b s (h d)') |
|
output = self.wo(output) |
|
|
|
return output |
|
|
|
|
|
class GELU(nn.Module): |
|
r""" |
|
GELU activation function with tanh approximation support with `approximate="tanh"`. |
|
|
|
Parameters: |
|
dim_in (`int`): The number of channels in the input. |
|
dim_out (`int`): The number of channels in the output. |
|
approximate (`str`, *optional*, defaults to `"none"`): If `"tanh"`, use tanh approximation. |
|
bias (`bool`, defaults to True): Whether to use a bias in the linear layer. |
|
""" |
|
|
|
def __init__(self, dim_in: int, dim_out: int, approximate: str = "none", bias: bool = True): |
|
super().__init__() |
|
self.proj = nn.Linear(dim_in, dim_out, bias=bias) |
|
self.approximate = approximate |
|
|
|
def gelu(self, gate: torch.Tensor) -> torch.Tensor: |
|
return torch.nn.functional.gelu(gate, approximate=self.approximate) |
|
|
|
def forward(self, hidden_states): |
|
hidden_states = self.proj(hidden_states) |
|
hidden_states = self.gelu(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class FeedForward(nn.Module): |
|
def __init__( |
|
self, |
|
dim: int, |
|
inner_dim: Optional[int] = None, |
|
dim_out: Optional[int] = None, |
|
mult: int = 4, |
|
bias: bool = False, |
|
): |
|
super().__init__() |
|
inner_dim = dim*mult if inner_dim is None else inner_dim |
|
dim_out = dim if dim_out is None else dim_out |
|
self.net = nn.ModuleList([ |
|
GELU(dim, inner_dim, approximate="tanh", bias=bias), |
|
nn.Identity(), |
|
nn.Linear(inner_dim, dim_out, bias=bias) |
|
]) |
|
|
|
|
|
def forward(self, hidden_states: torch.Tensor, *args, **kwargs) -> torch.Tensor: |
|
for module in self.net: |
|
hidden_states = module(hidden_states) |
|
return hidden_states |
|
|
|
|
|
def modulate(x, scale, shift): |
|
x = x * (1 + scale) + shift |
|
return x |
|
|
|
|
|
def gate(x, gate): |
|
x = gate * x |
|
return x |
|
|
|
|
|
class StepVideoTransformerBlock(nn.Module): |
|
r""" |
|
A basic Transformer block. |
|
|
|
Parameters: |
|
dim (`int`): The number of channels in the input and output. |
|
num_attention_heads (`int`): The number of heads to use for multi-head attention. |
|
attention_head_dim (`int`): The number of channels in each head. |
|
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. |
|
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention. |
|
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. |
|
num_embeds_ada_norm (: |
|
obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`. |
|
attention_bias (: |
|
obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter. |
|
only_cross_attention (`bool`, *optional*): |
|
Whether to use only cross-attention layers. In this case two cross attention layers are used. |
|
double_self_attention (`bool`, *optional*): |
|
Whether to use two self-attention layers. In this case no cross attention layers are used. |
|
upcast_attention (`bool`, *optional*): |
|
Whether to upcast the attention computation to float32. This is useful for mixed precision training. |
|
norm_elementwise_affine (`bool`, *optional*, defaults to `True`): |
|
Whether to use learnable elementwise affine parameters for normalization. |
|
norm_type (`str`, *optional*, defaults to `"layer_norm"`): |
|
The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`. |
|
final_dropout (`bool` *optional*, defaults to False): |
|
Whether to apply a final dropout after the last feed-forward layer. |
|
attention_type (`str`, *optional*, defaults to `"default"`): |
|
The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`. |
|
positional_embeddings (`str`, *optional*, defaults to `None`): |
|
The type of positional embeddings to apply to. |
|
num_positional_embeddings (`int`, *optional*, defaults to `None`): |
|
The maximum number of positional embeddings to apply. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dim: int, |
|
attention_head_dim: int, |
|
norm_eps: float = 1e-5, |
|
ff_inner_dim: Optional[int] = None, |
|
ff_bias: bool = False, |
|
attention_type: str = 'parallel' |
|
): |
|
super().__init__() |
|
self.dim = dim |
|
self.norm1 = nn.LayerNorm(dim, eps=norm_eps) |
|
self.attn1 = SelfAttention(dim, attention_head_dim, bias=False, with_rope=True, with_qk_norm=True, attn_type=attention_type) |
|
|
|
self.norm2 = nn.LayerNorm(dim, eps=norm_eps) |
|
self.attn2 = CrossAttention(dim, attention_head_dim, bias=False, with_qk_norm=True, attn_type='torch') |
|
|
|
self.ff = FeedForward(dim=dim, inner_dim=ff_inner_dim, dim_out=dim, bias=ff_bias) |
|
|
|
self.scale_shift_table = nn.Parameter(torch.randn(6, dim) /dim**0.5) |
|
|
|
@torch.no_grad() |
|
def forward( |
|
self, |
|
q: torch.Tensor, |
|
kv: Optional[torch.Tensor] = None, |
|
timestep: Optional[torch.LongTensor] = None, |
|
attn_mask = None, |
|
rope_positions: list = None, |
|
) -> torch.Tensor: |
|
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = ( |
|
torch.clone(chunk) for chunk in (self.scale_shift_table[None].to(dtype=q.dtype, device=q.device) + timestep.reshape(-1, 6, self.dim)).chunk(6, dim=1) |
|
) |
|
|
|
scale_shift_q = modulate(self.norm1(q), scale_msa, shift_msa) |
|
|
|
attn_q = self.attn1( |
|
scale_shift_q, |
|
rope_positions=rope_positions |
|
) |
|
|
|
q = gate(attn_q, gate_msa) + q |
|
|
|
attn_q = self.attn2( |
|
q, |
|
kv, |
|
attn_mask |
|
) |
|
|
|
q = attn_q + q |
|
|
|
scale_shift_q = modulate(self.norm2(q), scale_mlp, shift_mlp) |
|
|
|
ff_output = self.ff(scale_shift_q) |
|
|
|
q = gate(ff_output, gate_mlp) + q |
|
|
|
return q |
|
|
|
|
|
class PatchEmbed(nn.Module): |
|
"""2D Image to Patch Embedding""" |
|
|
|
def __init__( |
|
self, |
|
patch_size=64, |
|
in_channels=3, |
|
embed_dim=768, |
|
layer_norm=False, |
|
flatten=True, |
|
bias=True, |
|
): |
|
super().__init__() |
|
|
|
self.flatten = flatten |
|
self.layer_norm = layer_norm |
|
|
|
self.proj = nn.Conv2d( |
|
in_channels, embed_dim, kernel_size=(patch_size, patch_size), stride=patch_size, bias=bias |
|
) |
|
|
|
def forward(self, latent): |
|
latent = self.proj(latent).to(latent.dtype) |
|
if self.flatten: |
|
latent = latent.flatten(2).transpose(1, 2) |
|
if self.layer_norm: |
|
latent = self.norm(latent) |
|
|
|
return latent |
|
|
|
|
|
class StepVideoModel(torch.nn.Module): |
|
def __init__( |
|
self, |
|
num_attention_heads: int = 48, |
|
attention_head_dim: int = 128, |
|
in_channels: int = 64, |
|
out_channels: Optional[int] = 64, |
|
num_layers: int = 48, |
|
dropout: float = 0.0, |
|
patch_size: int = 1, |
|
norm_type: str = "ada_norm_single", |
|
norm_elementwise_affine: bool = False, |
|
norm_eps: float = 1e-6, |
|
use_additional_conditions: Optional[bool] = False, |
|
caption_channels: Optional[Union[int, List, Tuple]] = [6144, 1024], |
|
attention_type: Optional[str] = "torch", |
|
): |
|
super().__init__() |
|
|
|
|
|
self.inner_dim = num_attention_heads * attention_head_dim |
|
self.out_channels = in_channels if out_channels is None else out_channels |
|
|
|
self.use_additional_conditions = use_additional_conditions |
|
|
|
self.pos_embed = PatchEmbed( |
|
patch_size=patch_size, |
|
in_channels=in_channels, |
|
embed_dim=self.inner_dim, |
|
) |
|
|
|
self.transformer_blocks = nn.ModuleList( |
|
[ |
|
StepVideoTransformerBlock( |
|
dim=self.inner_dim, |
|
attention_head_dim=attention_head_dim, |
|
attention_type=attention_type |
|
) |
|
for _ in range(num_layers) |
|
] |
|
) |
|
|
|
|
|
self.norm_out = nn.LayerNorm(self.inner_dim, eps=norm_eps, elementwise_affine=norm_elementwise_affine) |
|
self.scale_shift_table = nn.Parameter(torch.randn(2, self.inner_dim) / self.inner_dim**0.5) |
|
self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels) |
|
self.patch_size = patch_size |
|
|
|
self.adaln_single = AdaLayerNormSingle( |
|
self.inner_dim, use_additional_conditions=self.use_additional_conditions |
|
) |
|
|
|
if isinstance(caption_channels, int): |
|
caption_channel = caption_channels |
|
else: |
|
caption_channel, clip_channel = caption_channels |
|
self.clip_projection = nn.Linear(clip_channel, self.inner_dim) |
|
|
|
self.caption_norm = nn.LayerNorm(caption_channel, eps=norm_eps, elementwise_affine=norm_elementwise_affine) |
|
|
|
self.caption_projection = PixArtAlphaTextProjection( |
|
in_features=caption_channel, hidden_size=self.inner_dim |
|
) |
|
|
|
self.parallel = attention_type=='parallel' |
|
|
|
def patchfy(self, hidden_states): |
|
hidden_states = rearrange(hidden_states, 'b f c h w -> (b f) c h w') |
|
hidden_states = self.pos_embed(hidden_states) |
|
return hidden_states |
|
|
|
def prepare_attn_mask(self, encoder_attention_mask, encoder_hidden_states, q_seqlen): |
|
kv_seqlens = encoder_attention_mask.sum(dim=1).int() |
|
mask = torch.zeros([len(kv_seqlens), q_seqlen, max(kv_seqlens)], dtype=torch.bool, device=encoder_attention_mask.device) |
|
encoder_hidden_states = encoder_hidden_states[:,: max(kv_seqlens)] |
|
for i, kv_len in enumerate(kv_seqlens): |
|
mask[i, :, :kv_len] = 1 |
|
return encoder_hidden_states, mask |
|
|
|
|
|
def block_forward( |
|
self, |
|
hidden_states, |
|
encoder_hidden_states=None, |
|
timestep=None, |
|
rope_positions=None, |
|
attn_mask=None, |
|
parallel=True |
|
): |
|
for block in tqdm(self.transformer_blocks, desc="Transformer blocks"): |
|
hidden_states = block( |
|
hidden_states, |
|
encoder_hidden_states, |
|
timestep=timestep, |
|
attn_mask=attn_mask, |
|
rope_positions=rope_positions |
|
) |
|
|
|
return hidden_states |
|
|
|
|
|
@torch.inference_mode() |
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
encoder_hidden_states: Optional[torch.Tensor] = None, |
|
encoder_hidden_states_2: Optional[torch.Tensor] = None, |
|
timestep: Optional[torch.LongTensor] = None, |
|
added_cond_kwargs: Dict[str, torch.Tensor] = None, |
|
encoder_attention_mask: Optional[torch.Tensor] = None, |
|
fps: torch.Tensor=None, |
|
return_dict: bool = False, |
|
): |
|
assert hidden_states.ndim==5; "hidden_states's shape should be (bsz, f, ch, h ,w)" |
|
|
|
bsz, frame, _, height, width = hidden_states.shape |
|
height, width = height // self.patch_size, width // self.patch_size |
|
|
|
hidden_states = self.patchfy(hidden_states) |
|
len_frame = hidden_states.shape[1] |
|
|
|
if self.use_additional_conditions: |
|
added_cond_kwargs = { |
|
"resolution": torch.tensor([(height, width)]*bsz, device=hidden_states.device, dtype=hidden_states.dtype), |
|
"nframe": torch.tensor([frame]*bsz, device=hidden_states.device, dtype=hidden_states.dtype), |
|
"fps": fps |
|
} |
|
else: |
|
added_cond_kwargs = {} |
|
|
|
timestep, embedded_timestep = self.adaln_single( |
|
timestep, added_cond_kwargs=added_cond_kwargs |
|
) |
|
|
|
encoder_hidden_states = self.caption_projection(self.caption_norm(encoder_hidden_states)) |
|
|
|
if encoder_hidden_states_2 is not None and hasattr(self, 'clip_projection'): |
|
clip_embedding = self.clip_projection(encoder_hidden_states_2) |
|
encoder_hidden_states = torch.cat([clip_embedding, encoder_hidden_states], dim=1) |
|
|
|
hidden_states = rearrange(hidden_states, '(b f) l d-> b (f l) d', b=bsz, f=frame, l=len_frame).contiguous() |
|
encoder_hidden_states, attn_mask = self.prepare_attn_mask(encoder_attention_mask, encoder_hidden_states, q_seqlen=frame*len_frame) |
|
|
|
hidden_states = self.block_forward( |
|
hidden_states, |
|
encoder_hidden_states, |
|
timestep=timestep, |
|
rope_positions=[frame, height, width], |
|
attn_mask=attn_mask, |
|
parallel=self.parallel |
|
) |
|
|
|
hidden_states = rearrange(hidden_states, 'b (f l) d -> (b f) l d', b=bsz, f=frame, l=len_frame) |
|
|
|
embedded_timestep = repeat(embedded_timestep, 'b d -> (b f) d', f=frame).contiguous() |
|
|
|
shift, scale = (self.scale_shift_table[None].to(dtype=embedded_timestep.dtype, device=embedded_timestep.device) + embedded_timestep[:, None]).chunk(2, dim=1) |
|
hidden_states = self.norm_out(hidden_states) |
|
|
|
hidden_states = hidden_states * (1 + scale) + shift |
|
hidden_states = self.proj_out(hidden_states) |
|
|
|
|
|
hidden_states = hidden_states.reshape( |
|
shape=(-1, height, width, self.patch_size, self.patch_size, self.out_channels) |
|
) |
|
|
|
hidden_states = rearrange(hidden_states, 'n h w p q c -> n c h p w q') |
|
output = hidden_states.reshape( |
|
shape=(-1, self.out_channels, height * self.patch_size, width * self.patch_size) |
|
) |
|
|
|
output = rearrange(output, '(b f) c h w -> b f c h w', f=frame) |
|
|
|
if return_dict: |
|
return {'x': output} |
|
return output |
|
|
|
@staticmethod |
|
def state_dict_converter(): |
|
return StepVideoDiTStateDictConverter() |
|
|
|
|
|
class StepVideoDiTStateDictConverter: |
|
def __init__(self): |
|
super().__init__() |
|
|
|
def from_diffusers(self, state_dict): |
|
return state_dict |
|
|
|
def from_civitai(self, state_dict): |
|
return state_dict |
|
|
|
|
|
|