|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
from einops import rearrange |
|
from torch import nn |
|
from torch.nn import functional as F |
|
from tqdm import tqdm |
|
from einops import repeat |
|
|
|
|
|
class BaseGroupNorm(nn.GroupNorm): |
|
def __init__(self, num_groups, num_channels): |
|
super().__init__(num_groups=num_groups, num_channels=num_channels) |
|
|
|
def forward(self, x, zero_pad=False, **kwargs): |
|
if zero_pad: |
|
return base_group_norm_with_zero_pad(x, self, **kwargs) |
|
else: |
|
return base_group_norm(x, self, **kwargs) |
|
|
|
|
|
def base_group_norm(x, norm_layer, act_silu=False, channel_last=False): |
|
if hasattr(base_group_norm, 'spatial') and base_group_norm.spatial: |
|
assert channel_last == True |
|
x_shape = x.shape |
|
x = x.flatten(0, 1) |
|
if channel_last: |
|
|
|
x = x.permute(0, 3, 1, 2) |
|
|
|
out = F.group_norm(x.contiguous(), norm_layer.num_groups, norm_layer.weight, norm_layer.bias, norm_layer.eps) |
|
if act_silu: |
|
out = F.silu(out) |
|
|
|
if channel_last: |
|
|
|
out = out.permute(0, 2, 3, 1) |
|
|
|
out = out.view(x_shape) |
|
else: |
|
if channel_last: |
|
|
|
x = x.permute(0, 3, 1, 2) |
|
out = F.group_norm(x.contiguous(), norm_layer.num_groups, norm_layer.weight, norm_layer.bias, norm_layer.eps) |
|
if act_silu: |
|
out = F.silu(out) |
|
if channel_last: |
|
|
|
out = out.permute(0, 2, 3, 1) |
|
return out |
|
|
|
def base_conv2d(x, conv_layer, channel_last=False, residual=None): |
|
if channel_last: |
|
x = x.permute(0, 3, 1, 2) |
|
out = F.conv2d(x, conv_layer.weight, conv_layer.bias, stride=conv_layer.stride, padding=conv_layer.padding) |
|
if residual is not None: |
|
if channel_last: |
|
residual = residual.permute(0, 3, 1, 2) |
|
out += residual |
|
if channel_last: |
|
out = out.permute(0, 2, 3, 1) |
|
return out |
|
|
|
def base_conv3d(x, conv_layer, channel_last=False, residual=None, only_return_output=False): |
|
if only_return_output: |
|
size = cal_outsize(x.shape, conv_layer.weight.shape, conv_layer.stride, conv_layer.padding) |
|
return torch.empty(size, device=x.device, dtype=x.dtype) |
|
if channel_last: |
|
x = x.permute(0, 4, 1, 2, 3) |
|
out = F.conv3d(x, conv_layer.weight, conv_layer.bias, stride=conv_layer.stride, padding=conv_layer.padding) |
|
if residual is not None: |
|
if channel_last: |
|
residual = residual.permute(0, 4, 1, 2, 3) |
|
out += residual |
|
if channel_last: |
|
out = out.permute(0, 2, 3, 4, 1) |
|
return out |
|
|
|
|
|
def cal_outsize(input_sizes, kernel_sizes, stride, padding): |
|
stride_d, stride_h, stride_w = stride |
|
padding_d, padding_h, padding_w = padding |
|
dilation_d, dilation_h, dilation_w = 1, 1, 1 |
|
|
|
in_d = input_sizes[1] |
|
in_h = input_sizes[2] |
|
in_w = input_sizes[3] |
|
in_channel = input_sizes[4] |
|
|
|
|
|
kernel_d = kernel_sizes[2] |
|
kernel_h = kernel_sizes[3] |
|
kernel_w = kernel_sizes[4] |
|
out_channels = kernel_sizes[0] |
|
|
|
out_d = calc_out_(in_d, padding_d, dilation_d, kernel_d, stride_d) |
|
out_h = calc_out_(in_h, padding_h, dilation_h, kernel_h, stride_h) |
|
out_w = calc_out_(in_w, padding_w, dilation_w, kernel_w, stride_w) |
|
size = [input_sizes[0], out_d, out_h, out_w, out_channels] |
|
return size |
|
|
|
|
|
|
|
|
|
def calc_out_(in_size, padding, dilation, kernel, stride): |
|
return (in_size + 2 * padding - dilation * (kernel - 1) - 1) // stride + 1 |
|
|
|
|
|
|
|
def base_conv3d_channel_last(x, conv_layer, residual=None): |
|
in_numel = x.numel() |
|
out_numel = int(x.numel() * conv_layer.out_channels / conv_layer.in_channels) |
|
if (in_numel >= 2**30) or (out_numel >= 2**30): |
|
assert conv_layer.stride[0] == 1, "time split asks time stride = 1" |
|
|
|
B,T,H,W,C = x.shape |
|
K = conv_layer.kernel_size[0] |
|
|
|
chunks = 4 |
|
chunk_size = T // chunks |
|
|
|
if residual is None: |
|
out_nhwc = base_conv3d(x, conv_layer, channel_last=True, residual=residual, only_return_output=True) |
|
else: |
|
out_nhwc = residual |
|
|
|
assert B == 1 |
|
outs = [] |
|
for i in range(chunks): |
|
if i == chunks-1: |
|
xi = x[:1,chunk_size*i:] |
|
out_nhwci = out_nhwc[:1,chunk_size*i:] |
|
else: |
|
xi = x[:1,chunk_size*i:chunk_size*(i+1)+K-1] |
|
out_nhwci = out_nhwc[:1,chunk_size*i:chunk_size*(i+1)] |
|
if residual is not None: |
|
if i == chunks-1: |
|
ri = residual[:1,chunk_size*i:] |
|
else: |
|
ri = residual[:1,chunk_size*i:chunk_size*(i+1)] |
|
else: |
|
ri = None |
|
out_nhwci.copy_(base_conv3d(xi, conv_layer, channel_last=True, residual=ri)) |
|
else: |
|
out_nhwc = base_conv3d(x, conv_layer, channel_last=True, residual=residual) |
|
return out_nhwc |
|
|
|
|
|
|
|
class Upsample2D(nn.Module): |
|
def __init__(self, |
|
channels, |
|
use_conv=False, |
|
use_conv_transpose=False, |
|
out_channels=None): |
|
super().__init__() |
|
self.channels = channels |
|
self.out_channels = out_channels or channels |
|
self.use_conv = use_conv |
|
self.use_conv_transpose = use_conv_transpose |
|
|
|
if use_conv: |
|
self.conv = nn.Conv2d(self.channels, self.out_channels, 3, padding=1) |
|
else: |
|
assert "Not Supported" |
|
self.conv = nn.ConvTranspose2d(channels, self.out_channels, 4, 2, 1) |
|
|
|
def forward(self, x, output_size=None): |
|
assert x.shape[-1] == self.channels |
|
|
|
if self.use_conv_transpose: |
|
return self.conv(x) |
|
|
|
if output_size is None: |
|
x = F.interpolate( |
|
x.permute(0,3,1,2).to(memory_format=torch.channels_last), |
|
scale_factor=2.0, mode='nearest').permute(0,2,3,1).contiguous() |
|
else: |
|
x = F.interpolate( |
|
x.permute(0,3,1,2).to(memory_format=torch.channels_last), |
|
size=output_size, mode='nearest').permute(0,2,3,1).contiguous() |
|
|
|
|
|
x = base_conv2d(x, self.conv, channel_last=True) |
|
return x |
|
|
|
|
|
class Downsample2D(nn.Module): |
|
def __init__(self, channels, use_conv=False, out_channels=None, padding=1): |
|
super().__init__() |
|
self.channels = channels |
|
self.out_channels = out_channels or channels |
|
self.use_conv = use_conv |
|
self.padding = padding |
|
stride = 2 |
|
|
|
if use_conv: |
|
self.conv = nn.Conv2d(self.channels, self.out_channels, 3, stride=stride, padding=padding) |
|
else: |
|
assert self.channels == self.out_channels |
|
self.conv = nn.AvgPool2d(kernel_size=stride, stride=stride) |
|
|
|
def forward(self, x): |
|
assert x.shape[-1] == self.channels |
|
if self.use_conv and self.padding == 0: |
|
pad = (0, 0, 0, 1, 0, 1) |
|
x = F.pad(x, pad, mode="constant", value=0) |
|
|
|
assert x.shape[-1] == self.channels |
|
|
|
x = base_conv2d(x, self.conv, channel_last=True) |
|
return x |
|
|
|
|
|
|
|
class CausalConv(nn.Module): |
|
def __init__(self, |
|
chan_in, |
|
chan_out, |
|
kernel_size, |
|
**kwargs |
|
): |
|
super().__init__() |
|
|
|
if isinstance(kernel_size, int): |
|
kernel_size = kernel_size if isinstance(kernel_size, tuple) else ((kernel_size,) * 3) |
|
time_kernel_size, height_kernel_size, width_kernel_size = kernel_size |
|
|
|
self.dilation = kwargs.pop('dilation', 1) |
|
self.stride = kwargs.pop('stride', 1) |
|
if isinstance(self.stride, int): |
|
self.stride = (self.stride, 1, 1) |
|
time_pad = self.dilation * (time_kernel_size - 1) + max((1 - self.stride[0]), 0) |
|
height_pad = height_kernel_size // 2 |
|
width_pad = width_kernel_size // 2 |
|
self.time_causal_padding = (width_pad, width_pad, height_pad, height_pad, time_pad, 0) |
|
self.time_uncausal_padding = (width_pad, width_pad, height_pad, height_pad, 0, 0) |
|
|
|
self.conv = nn.Conv3d(chan_in, chan_out, kernel_size, stride=self.stride, dilation=self.dilation, **kwargs) |
|
self.is_first_run = True |
|
|
|
def forward(self, x, is_init=True, residual=None): |
|
x = nn.functional.pad(x, |
|
self.time_causal_padding if is_init else self.time_uncausal_padding) |
|
|
|
x = self.conv(x) |
|
if residual is not None: |
|
x.add_(residual) |
|
return x |
|
|
|
|
|
class ChannelDuplicatingPixelUnshuffleUpSampleLayer3D(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: int, |
|
factor: int, |
|
): |
|
super().__init__() |
|
self.in_channels = in_channels |
|
self.out_channels = out_channels |
|
self.factor = factor |
|
assert out_channels * factor**3 % in_channels == 0 |
|
self.repeats = out_channels * factor**3 // in_channels |
|
|
|
def forward(self, x: torch.Tensor, is_init=True) -> torch.Tensor: |
|
x = x.repeat_interleave(self.repeats, dim=1) |
|
x = x.view(x.size(0), self.out_channels, self.factor, self.factor, self.factor, x.size(2), x.size(3), x.size(4)) |
|
x = x.permute(0, 1, 5, 2, 6, 3, 7, 4).contiguous() |
|
x = x.view(x.size(0), self.out_channels, x.size(2)*self.factor, x.size(4)*self.factor, x.size(6)*self.factor) |
|
x = x[:, :, self.factor - 1:, :, :] |
|
return x |
|
|
|
class ConvPixelShuffleUpSampleLayer3D(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: int, |
|
kernel_size: int, |
|
factor: int, |
|
): |
|
super().__init__() |
|
self.factor = factor |
|
out_ratio = factor**3 |
|
self.conv = CausalConv( |
|
in_channels, |
|
out_channels * out_ratio, |
|
kernel_size=kernel_size |
|
) |
|
|
|
def forward(self, x: torch.Tensor, is_init=True) -> torch.Tensor: |
|
x = self.conv(x, is_init) |
|
x = self.pixel_shuffle_3d(x, self.factor) |
|
return x |
|
|
|
@staticmethod |
|
def pixel_shuffle_3d(x: torch.Tensor, factor: int) -> torch.Tensor: |
|
batch_size, channels, depth, height, width = x.size() |
|
new_channels = channels // (factor ** 3) |
|
new_depth = depth * factor |
|
new_height = height * factor |
|
new_width = width * factor |
|
|
|
x = x.view(batch_size, new_channels, factor, factor, factor, depth, height, width) |
|
x = x.permute(0, 1, 5, 2, 6, 3, 7, 4).contiguous() |
|
x = x.view(batch_size, new_channels, new_depth, new_height, new_width) |
|
x = x[:, :, factor - 1:, :, :] |
|
return x |
|
|
|
class ConvPixelUnshuffleDownSampleLayer3D(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: int, |
|
kernel_size: int, |
|
factor: int, |
|
): |
|
super().__init__() |
|
self.factor = factor |
|
out_ratio = factor**3 |
|
assert out_channels % out_ratio == 0 |
|
self.conv = CausalConv( |
|
in_channels, |
|
out_channels // out_ratio, |
|
kernel_size=kernel_size |
|
) |
|
|
|
def forward(self, x: torch.Tensor, is_init=True) -> torch.Tensor: |
|
x = self.conv(x, is_init) |
|
x = self.pixel_unshuffle_3d(x, self.factor) |
|
return x |
|
|
|
@staticmethod |
|
def pixel_unshuffle_3d(x: torch.Tensor, factor: int) -> torch.Tensor: |
|
pad = (0, 0, 0, 0, factor-1, 0) |
|
x = F.pad(x, pad) |
|
B, C, D, H, W = x.shape |
|
x = x.view(B, C, D // factor, factor, H // factor, factor, W // factor, factor) |
|
x = x.permute(0, 1, 3, 5, 7, 2, 4, 6).contiguous() |
|
x = x.view(B, C * factor**3, D // factor, H // factor, W // factor) |
|
return x |
|
|
|
class PixelUnshuffleChannelAveragingDownSampleLayer3D(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: int, |
|
factor: int, |
|
): |
|
super().__init__() |
|
self.in_channels = in_channels |
|
self.out_channels = out_channels |
|
self.factor = factor |
|
assert in_channels * factor**3 % out_channels == 0 |
|
self.group_size = in_channels * factor**3 // out_channels |
|
|
|
def forward(self, x: torch.Tensor, is_init=True) -> torch.Tensor: |
|
pad = (0, 0, 0, 0, self.factor-1, 0) |
|
x = F.pad(x, pad) |
|
B, C, D, H, W = x.shape |
|
x = x.view(B, C, D // self.factor, self.factor, H // self.factor, self.factor, W // self.factor, self.factor) |
|
x = x.permute(0, 1, 3, 5, 7, 2, 4, 6).contiguous() |
|
x = x.view(B, C * self.factor**3, D // self.factor, H // self.factor, W // self.factor) |
|
x = x.view(B, self.out_channels, self.group_size, D // self.factor, H // self.factor, W // self.factor) |
|
x = x.mean(dim=2) |
|
return x |
|
|
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: int, |
|
factor: int, |
|
): |
|
super().__init__() |
|
self.in_channels = in_channels |
|
self.out_channels = out_channels |
|
self.factor = factor |
|
assert in_channels * factor**3 % out_channels == 0 |
|
self.group_size = in_channels * factor**3 // out_channels |
|
|
|
def forward(self, x: torch.Tensor, is_init=True) -> torch.Tensor: |
|
pad = (0, 0, 0, 0, self.factor-1, 0) |
|
x = F.pad(x, pad) |
|
B, C, D, H, W = x.shape |
|
x = x.view(B, C, D // self.factor, self.factor, H // self.factor, self.factor, W // self.factor, self.factor) |
|
x = x.permute(0, 1, 3, 5, 7, 2, 4, 6).contiguous() |
|
x = x.view(B, C * self.factor**3, D // self.factor, H // self.factor, W // self.factor) |
|
x = x.view(B, self.out_channels, self.group_size, D // self.factor, H // self.factor, W // self.factor) |
|
x = x.mean(dim=2) |
|
return x |
|
|
|
|
|
|
|
|
|
def base_group_norm_with_zero_pad(x, norm_layer, act_silu=True, pad_size=2): |
|
out_shape = list(x.shape) |
|
out_shape[1] += pad_size |
|
out = torch.empty(out_shape, dtype=x.dtype, device=x.device) |
|
out[:, pad_size:] = base_group_norm(x, norm_layer, act_silu=act_silu, channel_last=True) |
|
out[:, :pad_size] = 0 |
|
return out |
|
|
|
|
|
class CausalConvChannelLast(CausalConv): |
|
def __init__(self, |
|
chan_in, |
|
chan_out, |
|
kernel_size, |
|
**kwargs |
|
): |
|
super().__init__( |
|
chan_in, chan_out, kernel_size, **kwargs) |
|
|
|
self.time_causal_padding = (0, 0) + self.time_causal_padding |
|
self.time_uncausal_padding = (0, 0) + self.time_uncausal_padding |
|
|
|
def forward(self, x, is_init=True, residual=None): |
|
if self.is_first_run: |
|
self.is_first_run = False |
|
|
|
|
|
x = nn.functional.pad(x, |
|
self.time_causal_padding if is_init else self.time_uncausal_padding) |
|
|
|
x = base_conv3d_channel_last(x, self.conv, residual=residual) |
|
return x |
|
|
|
class CausalConvAfterNorm(CausalConv): |
|
def __init__(self, |
|
chan_in, |
|
chan_out, |
|
kernel_size, |
|
**kwargs |
|
): |
|
super().__init__( |
|
chan_in, chan_out, kernel_size, **kwargs) |
|
|
|
if self.time_causal_padding == (1, 1, 1, 1, 2, 0): |
|
self.conv = nn.Conv3d(chan_in, chan_out, kernel_size, stride=self.stride, dilation=self.dilation, padding=(0, 1, 1), **kwargs) |
|
else: |
|
self.conv = nn.Conv3d(chan_in, chan_out, kernel_size, stride=self.stride, dilation=self.dilation, **kwargs) |
|
self.is_first_run = True |
|
|
|
def forward(self, x, is_init=True, residual=None): |
|
if self.is_first_run: |
|
self.is_first_run = False |
|
|
|
if self.time_causal_padding == (1, 1, 1, 1, 2, 0): |
|
pass |
|
else: |
|
x = nn.functional.pad(x, self.time_causal_padding).contiguous() |
|
|
|
x = base_conv3d_channel_last(x, self.conv, residual=residual) |
|
return x |
|
|
|
class AttnBlock(nn.Module): |
|
def __init__(self, |
|
in_channels |
|
): |
|
super().__init__() |
|
|
|
self.norm = BaseGroupNorm(num_groups=32, num_channels=in_channels) |
|
self.q = CausalConvChannelLast(in_channels, in_channels, kernel_size=1) |
|
self.k = CausalConvChannelLast(in_channels, in_channels, kernel_size=1) |
|
self.v = CausalConvChannelLast(in_channels, in_channels, kernel_size=1) |
|
self.proj_out = CausalConvChannelLast(in_channels, in_channels, kernel_size=1) |
|
|
|
def attention(self, x, is_init=True): |
|
x = self.norm(x, act_silu=False, channel_last=True) |
|
q = self.q(x, is_init) |
|
k = self.k(x, is_init) |
|
v = self.v(x, is_init) |
|
|
|
b, t, h, w, c = q.shape |
|
q, k, v = map(lambda x: rearrange(x, "b t h w c -> b 1 (t h w) c"), (q, k, v)) |
|
x = nn.functional.scaled_dot_product_attention(q, k, v, is_causal=True) |
|
x = rearrange(x, "b 1 (t h w) c -> b t h w c", t=t, h=h, w=w) |
|
|
|
return x |
|
|
|
def forward(self, x): |
|
x = x.permute(0,2,3,4,1).contiguous() |
|
h = self.attention(x) |
|
x = self.proj_out(h, residual=x) |
|
x = x.permute(0,4,1,2,3) |
|
return x |
|
|
|
class Resnet3DBlock(nn.Module): |
|
def __init__(self, |
|
in_channels, |
|
out_channels=None, |
|
temb_channels=512, |
|
conv_shortcut=False, |
|
): |
|
super().__init__() |
|
|
|
self.in_channels = in_channels |
|
out_channels = in_channels if out_channels is None else out_channels |
|
self.out_channels = out_channels |
|
|
|
self.norm1 = BaseGroupNorm(num_groups=32, num_channels=in_channels) |
|
self.conv1 = CausalConvAfterNorm(in_channels, out_channels, kernel_size=3) |
|
if temb_channels > 0: |
|
self.temb_proj = nn.Linear(temb_channels, out_channels) |
|
|
|
self.norm2 = BaseGroupNorm(num_groups=32, num_channels=out_channels) |
|
self.conv2 = CausalConvAfterNorm(out_channels, out_channels, kernel_size=3) |
|
|
|
assert conv_shortcut is False |
|
self.use_conv_shortcut = conv_shortcut |
|
if self.in_channels != self.out_channels: |
|
if self.use_conv_shortcut: |
|
self.conv_shortcut = CausalConvAfterNorm(in_channels, out_channels, kernel_size=3) |
|
else: |
|
self.nin_shortcut = CausalConvAfterNorm(in_channels, out_channels, kernel_size=1) |
|
|
|
def forward(self, x, temb=None, is_init=True): |
|
x = x.permute(0,2,3,4,1).contiguous() |
|
|
|
h = self.norm1(x, zero_pad=True, act_silu=True, pad_size=2) |
|
h = self.conv1(h) |
|
if temb is not None: |
|
h = h + self.temb_proj(nn.functional.silu(temb))[:, :, None, None] |
|
|
|
x = self.nin_shortcut(x) if self.in_channels != self.out_channels else x |
|
|
|
h = self.norm2(h, zero_pad=True, act_silu=True, pad_size=2) |
|
x = self.conv2(h, residual=x) |
|
|
|
x = x.permute(0,4,1,2,3) |
|
return x |
|
|
|
|
|
class Downsample3D(nn.Module): |
|
def __init__(self, |
|
in_channels, |
|
with_conv, |
|
stride |
|
): |
|
super().__init__() |
|
|
|
self.with_conv = with_conv |
|
if with_conv: |
|
self.conv = CausalConv(in_channels, in_channels, kernel_size=3, stride=stride) |
|
|
|
def forward(self, x, is_init=True): |
|
if self.with_conv: |
|
x = self.conv(x, is_init) |
|
else: |
|
x = nn.functional.avg_pool3d(x, kernel_size=2, stride=2) |
|
return x |
|
|
|
class VideoEncoder(nn.Module): |
|
def __init__(self, |
|
ch=32, |
|
ch_mult=(4, 8, 16, 16), |
|
num_res_blocks=2, |
|
in_channels=3, |
|
z_channels=16, |
|
double_z=True, |
|
down_sampling_layer=[1, 2], |
|
resamp_with_conv=True, |
|
version=1, |
|
): |
|
super().__init__() |
|
|
|
temb_ch = 0 |
|
|
|
self.num_resolutions = len(ch_mult) |
|
self.num_res_blocks = num_res_blocks |
|
|
|
|
|
self.conv_in = CausalConv(in_channels, ch, kernel_size=3) |
|
self.down_sampling_layer = down_sampling_layer |
|
|
|
in_ch_mult = (1,) + tuple(ch_mult) |
|
self.down = nn.ModuleList() |
|
for i_level in range(self.num_resolutions): |
|
block = nn.ModuleList() |
|
attn = nn.ModuleList() |
|
block_in = ch * in_ch_mult[i_level] |
|
block_out = ch * ch_mult[i_level] |
|
for i_block in range(self.num_res_blocks): |
|
block.append( |
|
Resnet3DBlock(in_channels=block_in, out_channels=block_out, temb_channels=temb_ch)) |
|
block_in = block_out |
|
down = nn.Module() |
|
down.block = block |
|
down.attn = attn |
|
if i_level != self.num_resolutions - 1: |
|
if i_level in self.down_sampling_layer: |
|
down.downsample = Downsample3D(block_in, resamp_with_conv, stride=(2, 2, 2)) |
|
else: |
|
down.downsample = Downsample2D(block_in, resamp_with_conv, padding=0) |
|
self.down.append(down) |
|
|
|
|
|
self.mid = nn.Module() |
|
self.mid.block_1 = Resnet3DBlock(in_channels=block_in, out_channels=block_in, temb_channels=temb_ch) |
|
self.mid.attn_1 = AttnBlock(block_in) |
|
self.mid.block_2 = Resnet3DBlock(in_channels=block_in, out_channels=block_in, temb_channels=temb_ch) |
|
|
|
|
|
self.norm_out = nn.GroupNorm(num_groups=32, num_channels=block_in) |
|
self.version = version |
|
if version == 2: |
|
channels = 4 * z_channels * 2 ** 3 |
|
self.conv_patchify = ConvPixelUnshuffleDownSampleLayer3D(block_in, channels, kernel_size=3, factor=2) |
|
self.shortcut_pathify = PixelUnshuffleChannelAveragingDownSampleLayer3D(block_in, channels, 2) |
|
self.shortcut_out = PixelUnshuffleChannelAveragingDownSampleLayer3D(channels, 2 * z_channels if double_z else z_channels, 1) |
|
self.conv_out = CausalConvChannelLast(channels, 2 * z_channels if double_z else z_channels, kernel_size=3) |
|
else: |
|
self.conv_out = CausalConvAfterNorm(block_in, 2 * z_channels if double_z else z_channels, kernel_size=3) |
|
|
|
@torch.inference_mode() |
|
def forward(self, x, video_frame_num, is_init=True): |
|
|
|
temb = None |
|
|
|
t = video_frame_num |
|
|
|
|
|
h = self.conv_in(x, is_init) |
|
|
|
|
|
h = h.permute(0,2,3,4,1).contiguous().permute(0,4,1,2,3) |
|
|
|
for i_level in range(self.num_resolutions): |
|
for i_block in range(self.num_res_blocks): |
|
h = self.down[i_level].block[i_block](h, temb, is_init) |
|
if len(self.down[i_level].attn) > 0: |
|
h = self.down[i_level].attn[i_block](h) |
|
|
|
if i_level != self.num_resolutions - 1: |
|
if isinstance(self.down[i_level].downsample, Downsample2D): |
|
_, _, t, _, _ = h.shape |
|
h = rearrange(h, "b c t h w -> (b t) h w c", t=t) |
|
h = self.down[i_level].downsample(h) |
|
h = rearrange(h, "(b t) h w c -> b c t h w", t=t) |
|
else: |
|
h = self.down[i_level].downsample(h, is_init) |
|
|
|
h = self.mid.block_1(h, temb, is_init) |
|
h = self.mid.attn_1(h) |
|
h = self.mid.block_2(h, temb, is_init) |
|
|
|
h = h.permute(0,2,3,4,1).contiguous() |
|
if self.version == 2: |
|
h = base_group_norm(h, self.norm_out, act_silu=True, channel_last=True) |
|
h = h.permute(0,4,1,2,3).contiguous() |
|
shortcut = self.shortcut_pathify(h, is_init) |
|
h = self.conv_patchify(h, is_init) |
|
h = h.add_(shortcut) |
|
shortcut = self.shortcut_out(h, is_init).permute(0,2,3,4,1) |
|
h = self.conv_out(h.permute(0,2,3,4,1).contiguous(), is_init) |
|
h = h.add_(shortcut) |
|
else: |
|
h = base_group_norm_with_zero_pad(h, self.norm_out, act_silu=True, pad_size=2) |
|
h = self.conv_out(h, is_init) |
|
h = h.permute(0,4,1,2,3) |
|
|
|
h = rearrange(h, "b c t h w -> b t c h w") |
|
return h |
|
|
|
|
|
class Res3DBlockUpsample(nn.Module): |
|
def __init__(self, |
|
input_filters, |
|
num_filters, |
|
down_sampling_stride, |
|
down_sampling=False |
|
): |
|
super().__init__() |
|
|
|
self.input_filters = input_filters |
|
self.num_filters = num_filters |
|
|
|
self.act_ = nn.SiLU(inplace=True) |
|
|
|
self.conv1 = CausalConvChannelLast(num_filters, num_filters, kernel_size=[3, 3, 3]) |
|
self.norm1 = BaseGroupNorm(32, num_filters) |
|
|
|
self.conv2 = CausalConvChannelLast(num_filters, num_filters, kernel_size=[3, 3, 3]) |
|
self.norm2 = BaseGroupNorm(32, num_filters) |
|
|
|
self.down_sampling = down_sampling |
|
if down_sampling: |
|
self.down_sampling_stride = down_sampling_stride |
|
else: |
|
self.down_sampling_stride = [1, 1, 1] |
|
|
|
if num_filters != input_filters or down_sampling: |
|
self.conv3 = CausalConvChannelLast(input_filters, num_filters, kernel_size=[1, 1, 1], stride=self.down_sampling_stride) |
|
self.norm3 = BaseGroupNorm(32, num_filters) |
|
|
|
def forward(self, x, is_init=False): |
|
x = x.permute(0,2,3,4,1).contiguous() |
|
|
|
residual = x |
|
|
|
h = self.conv1(x, is_init) |
|
h = self.norm1(h, act_silu=True, channel_last=True) |
|
|
|
h = self.conv2(h, is_init) |
|
h = self.norm2(h, act_silu=False, channel_last=True) |
|
|
|
if self.down_sampling or self.num_filters != self.input_filters: |
|
x = self.conv3(x, is_init) |
|
x = self.norm3(x, act_silu=False, channel_last=True) |
|
|
|
h.add_(x) |
|
h = self.act_(h) |
|
if residual is not None: |
|
h.add_(residual) |
|
|
|
h = h.permute(0,4,1,2,3) |
|
return h |
|
|
|
class Upsample3D(nn.Module): |
|
def __init__(self, |
|
in_channels, |
|
scale_factor=2 |
|
): |
|
super().__init__() |
|
|
|
self.scale_factor = scale_factor |
|
self.conv3d = Res3DBlockUpsample(input_filters=in_channels, |
|
num_filters=in_channels, |
|
down_sampling_stride=(1, 1, 1), |
|
down_sampling=False) |
|
|
|
def forward(self, x, is_init=True, is_split=True): |
|
b, c, t, h, w = x.shape |
|
|
|
|
|
if is_split: |
|
split_size = c // 8 |
|
x_slices = torch.split(x, split_size, dim=1) |
|
x = [nn.functional.interpolate(x, scale_factor=self.scale_factor) for x in x_slices] |
|
x = torch.cat(x, dim=1) |
|
else: |
|
x = nn.functional.interpolate(x, scale_factor=self.scale_factor) |
|
|
|
x = self.conv3d(x, is_init) |
|
return x |
|
|
|
class VideoDecoder(nn.Module): |
|
def __init__(self, |
|
ch=128, |
|
z_channels=16, |
|
out_channels=3, |
|
ch_mult=(1, 2, 4, 4), |
|
num_res_blocks=2, |
|
temporal_up_layers=[2, 3], |
|
temporal_downsample=4, |
|
resamp_with_conv=True, |
|
version=1, |
|
): |
|
super().__init__() |
|
|
|
temb_ch = 0 |
|
|
|
self.num_resolutions = len(ch_mult) |
|
self.num_res_blocks = num_res_blocks |
|
self.temporal_downsample = temporal_downsample |
|
|
|
block_in = ch * ch_mult[self.num_resolutions - 1] |
|
self.version = version |
|
if version == 2: |
|
channels = 4 * z_channels * 2 ** 3 |
|
self.conv_in = CausalConv(z_channels, channels, kernel_size=3) |
|
self.shortcut_in = ChannelDuplicatingPixelUnshuffleUpSampleLayer3D(z_channels, channels, 1) |
|
self.conv_unpatchify = ConvPixelShuffleUpSampleLayer3D(channels, block_in, kernel_size=3, factor=2) |
|
self.shortcut_unpathify = ChannelDuplicatingPixelUnshuffleUpSampleLayer3D(channels, block_in, 2) |
|
else: |
|
self.conv_in = CausalConv(z_channels, block_in, kernel_size=3) |
|
|
|
|
|
self.mid = nn.Module() |
|
self.mid.block_1 = Resnet3DBlock(in_channels=block_in, out_channels=block_in, temb_channels=temb_ch) |
|
self.mid.attn_1 = AttnBlock(block_in) |
|
self.mid.block_2 = Resnet3DBlock(in_channels=block_in, out_channels=block_in, temb_channels=temb_ch) |
|
|
|
|
|
self.up_id = len(temporal_up_layers) |
|
self.video_frame_num = 1 |
|
self.cur_video_frame_num = self.video_frame_num // 2 ** self.up_id + 1 |
|
self.up = nn.ModuleList() |
|
for i_level in reversed(range(self.num_resolutions)): |
|
block = nn.ModuleList() |
|
attn = nn.ModuleList() |
|
block_out = ch * ch_mult[i_level] |
|
for i_block in range(self.num_res_blocks + 1): |
|
block.append( |
|
Resnet3DBlock(in_channels=block_in, out_channels=block_out, temb_channels=temb_ch)) |
|
block_in = block_out |
|
up = nn.Module() |
|
up.block = block |
|
up.attn = attn |
|
if i_level != 0: |
|
if i_level in temporal_up_layers: |
|
up.upsample = Upsample3D(block_in) |
|
self.cur_video_frame_num = self.cur_video_frame_num * 2 |
|
else: |
|
up.upsample = Upsample2D(block_in, resamp_with_conv) |
|
self.up.insert(0, up) |
|
|
|
|
|
self.norm_out = nn.GroupNorm(num_groups=32, num_channels=block_in) |
|
self.conv_out = CausalConvAfterNorm(block_in, out_channels, kernel_size=3) |
|
|
|
@torch.inference_mode() |
|
def forward(self, z, is_init=True): |
|
z = rearrange(z, "b t c h w -> b c t h w") |
|
|
|
h = self.conv_in(z, is_init=is_init) |
|
if self.version == 2: |
|
shortcut = self.shortcut_in(z, is_init=is_init) |
|
h = h.add_(shortcut) |
|
shortcut = self.shortcut_unpathify(h, is_init=is_init) |
|
h = self.conv_unpatchify(h, is_init=is_init) |
|
h = h.add_(shortcut) |
|
|
|
temb = None |
|
|
|
h = h.permute(0,2,3,4,1).contiguous().permute(0,4,1,2,3) |
|
h = self.mid.block_1(h, temb, is_init=is_init) |
|
h = self.mid.attn_1(h) |
|
h = h.permute(0,2,3,4,1).contiguous().permute(0,4,1,2,3) |
|
h = self.mid.block_2(h, temb, is_init=is_init) |
|
|
|
|
|
for i_level in reversed(range(self.num_resolutions)): |
|
for i_block in range(self.num_res_blocks + 1): |
|
h = h.permute(0,2,3,4,1).contiguous().permute(0,4,1,2,3) |
|
h = self.up[i_level].block[i_block](h, temb, is_init=is_init) |
|
if len(self.up[i_level].attn) > 0: |
|
h = self.up[i_level].attn[i_block](h) |
|
if i_level != 0: |
|
if isinstance(self.up[i_level].upsample, Upsample2D) or (hasattr(self.up[i_level].upsample, "module") and isinstance(self.up[i_level].upsample.module, Upsample2D)): |
|
B = h.size(0) |
|
h = h.permute(0,2,3,4,1).flatten(0,1) |
|
h = self.up[i_level].upsample(h) |
|
h = h.unflatten(0, (B, -1)).permute(0,4,1,2,3) |
|
else: |
|
h = self.up[i_level].upsample(h, is_init=is_init) |
|
|
|
|
|
h = h.permute(0,2,3,4,1) |
|
self.norm_out.to(dtype=h.dtype, device=h.device) |
|
h = base_group_norm_with_zero_pad(h, self.norm_out, act_silu=True, pad_size=2) |
|
h = self.conv_out(h) |
|
h = h.permute(0,4,1,2,3) |
|
|
|
if is_init: |
|
h = h[:, :, (self.temporal_downsample - 1):] |
|
return h |
|
|
|
|
|
|
|
def rms_norm(input, normalized_shape, eps=1e-6): |
|
dtype = input.dtype |
|
input = input.to(torch.float32) |
|
variance = input.pow(2).flatten(-len(normalized_shape)).mean(-1)[(...,) + (None,) * len(normalized_shape)] |
|
input = input * torch.rsqrt(variance + eps) |
|
return input.to(dtype) |
|
|
|
class DiagonalGaussianDistribution(object): |
|
def __init__(self, parameters, deterministic=False, rms_norm_mean=False, only_return_mean=False): |
|
self.parameters = parameters |
|
self.mean, self.logvar = torch.chunk(parameters, 2, dim=-3) |
|
self.logvar = torch.clamp(self.logvar, -30.0, 20.0) |
|
self.std = torch.exp(0.5 * self.logvar) |
|
self.var = torch.exp(self.logvar) |
|
self.deterministic = deterministic |
|
if self.deterministic: |
|
self.var = self.std = torch.zeros_like( |
|
self.mean, |
|
device=self.parameters.device, |
|
dtype=self.parameters.dtype) |
|
if rms_norm_mean: |
|
self.mean = rms_norm(self.mean, self.mean.size()[1:]) |
|
self.only_return_mean = only_return_mean |
|
|
|
def sample(self, generator=None): |
|
|
|
|
|
sample = torch.randn( |
|
self.mean.shape, generator=generator, device=self.parameters.device) |
|
sample = sample.to(dtype=self.parameters.dtype) |
|
x = self.mean + self.std * sample |
|
if self.only_return_mean: |
|
return self.mean |
|
else: |
|
return x |
|
|
|
|
|
class StepVideoVAE(nn.Module): |
|
def __init__(self, |
|
in_channels=3, |
|
out_channels=3, |
|
z_channels=64, |
|
num_res_blocks=2, |
|
model_path=None, |
|
weight_dict={}, |
|
world_size=1, |
|
version=2, |
|
): |
|
super().__init__() |
|
|
|
self.frame_len = 17 |
|
self.latent_len = 3 if version == 2 else 5 |
|
|
|
base_group_norm.spatial = True if version == 2 else False |
|
|
|
self.encoder = VideoEncoder( |
|
in_channels=in_channels, |
|
z_channels=z_channels, |
|
num_res_blocks=num_res_blocks, |
|
version=version, |
|
) |
|
|
|
self.decoder = VideoDecoder( |
|
z_channels=z_channels, |
|
out_channels=out_channels, |
|
num_res_blocks=num_res_blocks, |
|
version=version, |
|
) |
|
|
|
if model_path is not None: |
|
weight_dict = self.init_from_ckpt(model_path) |
|
if len(weight_dict) != 0: |
|
self.load_from_dict(weight_dict) |
|
self.convert_channel_last() |
|
|
|
self.world_size = world_size |
|
|
|
def init_from_ckpt(self, model_path): |
|
from safetensors import safe_open |
|
p = {} |
|
with safe_open(model_path, framework="pt", device="cpu") as f: |
|
for k in f.keys(): |
|
tensor = f.get_tensor(k) |
|
if k.startswith("decoder.conv_out."): |
|
k = k.replace("decoder.conv_out.", "decoder.conv_out.conv.") |
|
p[k] = tensor |
|
return p |
|
|
|
def load_from_dict(self, p): |
|
self.load_state_dict(p) |
|
|
|
def convert_channel_last(self): |
|
|
|
pass |
|
|
|
def naive_encode(self, x, is_init_image=True): |
|
b, l, c, h, w = x.size() |
|
x = rearrange(x, 'b l c h w -> b c l h w').contiguous() |
|
z = self.encoder(x, l, True) |
|
return z |
|
|
|
@torch.inference_mode() |
|
def encode(self, x): |
|
|
|
chunks = list(x.split(self.frame_len, dim=1)) |
|
for i in range(len(chunks)): |
|
chunks[i] = self.naive_encode(chunks[i], True) |
|
z = torch.cat(chunks, dim=1) |
|
|
|
posterior = DiagonalGaussianDistribution(z) |
|
return posterior.sample() |
|
|
|
def decode_naive(self, z, is_init=True): |
|
z = z.to(next(self.decoder.parameters()).dtype) |
|
dec = self.decoder(z, is_init) |
|
return dec |
|
|
|
@torch.inference_mode() |
|
def decode_original(self, z): |
|
|
|
chunks = list(z.split(self.latent_len, dim=1)) |
|
|
|
if self.world_size > 1: |
|
chunks_total_num = len(chunks) |
|
max_num_per_rank = (chunks_total_num + self.world_size - 1) // self.world_size |
|
rank = torch.distributed.get_rank() |
|
chunks_ = chunks[max_num_per_rank * rank : max_num_per_rank * (rank + 1)] |
|
if len(chunks_) < max_num_per_rank: |
|
chunks_.extend(chunks[:max_num_per_rank-len(chunks_)]) |
|
chunks = chunks_ |
|
|
|
for i in range(len(chunks)): |
|
chunks[i] = self.decode_naive(chunks[i], True).permute(0,2,1,3,4) |
|
x = torch.cat(chunks, dim=1) |
|
|
|
if self.world_size > 1: |
|
x_ = torch.empty([x.size(0), (self.world_size * max_num_per_rank) * self.frame_len, *x.shape[2:]], dtype=x.dtype, device=x.device) |
|
torch.distributed.all_gather_into_tensor(x_, x) |
|
x = x_[:, : chunks_total_num * self.frame_len] |
|
|
|
x = self.mix(x) |
|
return x |
|
|
|
def mix(self, x, smooth_scale = 0.6): |
|
remain_scale = smooth_scale |
|
mix_scale = 1. - remain_scale |
|
front = slice(self.frame_len - 1, x.size(1) - 1, self.frame_len) |
|
back = slice(self.frame_len, x.size(1), self.frame_len) |
|
x[:, front], x[:, back] = ( |
|
x[:, front] * remain_scale + x[:, back] * mix_scale, |
|
x[:, back] * remain_scale + x[:, front] * mix_scale |
|
) |
|
return x |
|
|
|
def single_decode(self, hidden_states, device): |
|
chunks = list(hidden_states.split(self.latent_len, dim=1)) |
|
for i in range(len(chunks)): |
|
chunks[i] = self.decode_naive(chunks[i].to(device), True).permute(0,2,1,3,4).cpu() |
|
x = torch.cat(chunks, dim=1) |
|
return x |
|
|
|
def build_1d_mask(self, length, left_bound, right_bound, border_width): |
|
x = torch.ones((length,)) |
|
if not left_bound: |
|
x[:border_width] = (torch.arange(border_width) + 1) / border_width |
|
if not right_bound: |
|
x[-border_width:] = torch.flip((torch.arange(border_width) + 1) / border_width, dims=(0,)) |
|
return x |
|
|
|
def build_mask(self, data, is_bound, border_width): |
|
_, _, _, H, W = data.shape |
|
h = self.build_1d_mask(H, is_bound[0], is_bound[1], border_width[0]) |
|
w = self.build_1d_mask(W, is_bound[2], is_bound[3], border_width[1]) |
|
|
|
h = repeat(h, "H -> H W", H=H, W=W) |
|
w = repeat(w, "W -> H W", H=H, W=W) |
|
|
|
mask = torch.stack([h, w]).min(dim=0).values |
|
mask = rearrange(mask, "H W -> 1 1 1 H W") |
|
return mask |
|
|
|
def tiled_decode(self, hidden_states, device, tile_size=(34, 34), tile_stride=(16, 16)): |
|
B, T, C, H, W = hidden_states.shape |
|
size_h, size_w = tile_size |
|
stride_h, stride_w = tile_stride |
|
|
|
|
|
tasks = [] |
|
for t in range(0, T, 3): |
|
for h in range(0, H, stride_h): |
|
if (h-stride_h >= 0 and h-stride_h+size_h >= H): continue |
|
for w in range(0, W, stride_w): |
|
if (w-stride_w >= 0 and w-stride_w+size_w >= W): continue |
|
t_, h_, w_ = t + 3, h + size_h, w + size_w |
|
tasks.append((t, t_, h, h_, w, w_)) |
|
|
|
|
|
data_device = "cpu" |
|
computation_device = device |
|
|
|
weight = torch.zeros((1, 1, T//3*17, H * 16, W * 16), dtype=hidden_states.dtype, device=data_device) |
|
values = torch.zeros((B, 3, T//3*17, H * 16, W * 16), dtype=hidden_states.dtype, device=data_device) |
|
|
|
for t, t_, h, h_, w, w_ in tqdm(tasks, desc="VAE decoding"): |
|
hidden_states_batch = hidden_states[:, t:t_, :, h:h_, w:w_].to(computation_device) |
|
hidden_states_batch = self.decode_naive(hidden_states_batch, True).to(data_device) |
|
|
|
mask = self.build_mask( |
|
hidden_states_batch, |
|
is_bound=(h==0, h_>=H, w==0, w_>=W), |
|
border_width=((size_h - stride_h) * 16, (size_w - stride_w) * 16) |
|
).to(dtype=hidden_states.dtype, device=data_device) |
|
|
|
target_t = t // 3 * 17 |
|
target_h = h * 16 |
|
target_w = w * 16 |
|
values[ |
|
:, |
|
:, |
|
target_t: target_t + hidden_states_batch.shape[2], |
|
target_h: target_h + hidden_states_batch.shape[3], |
|
target_w: target_w + hidden_states_batch.shape[4], |
|
] += hidden_states_batch * mask |
|
weight[ |
|
:, |
|
:, |
|
target_t: target_t + hidden_states_batch.shape[2], |
|
target_h: target_h + hidden_states_batch.shape[3], |
|
target_w: target_w + hidden_states_batch.shape[4], |
|
] += mask |
|
return values / weight |
|
|
|
def decode(self, hidden_states, device, tiled=False, tile_size=(34, 34), tile_stride=(16, 16), smooth_scale=0.6): |
|
hidden_states = hidden_states.to("cpu") |
|
if tiled: |
|
video = self.tiled_decode(hidden_states, device, tile_size, tile_stride) |
|
else: |
|
video = self.single_decode(hidden_states, device) |
|
video = self.mix(video, smooth_scale=smooth_scale) |
|
return video |
|
|
|
@staticmethod |
|
def state_dict_converter(): |
|
return StepVideoVAEStateDictConverter() |
|
|
|
|
|
class StepVideoVAEStateDictConverter: |
|
def __init__(self): |
|
super().__init__() |
|
|
|
def from_diffusers(self, state_dict): |
|
return self.from_civitai(state_dict) |
|
|
|
def from_civitai(self, state_dict): |
|
state_dict_ = {} |
|
for name, param in state_dict.items(): |
|
if name.startswith("decoder.conv_out."): |
|
name_ = name.replace("decoder.conv_out.", "decoder.conv_out.conv.") |
|
else: |
|
name_ = name |
|
state_dict_[name_] = param |
|
return state_dict_ |
|
|