|
import torch |
|
from .attention import Attention |
|
from .sd_unet import ResnetBlock, UpSampler |
|
from .tiler import TileWorker |
|
from einops import rearrange, repeat |
|
|
|
|
|
class VAEAttentionBlock(torch.nn.Module): |
|
|
|
def __init__(self, num_attention_heads, attention_head_dim, in_channels, num_layers=1, norm_num_groups=32, eps=1e-5): |
|
super().__init__() |
|
inner_dim = num_attention_heads * attention_head_dim |
|
|
|
self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=eps, affine=True) |
|
|
|
self.transformer_blocks = torch.nn.ModuleList([ |
|
Attention( |
|
inner_dim, |
|
num_attention_heads, |
|
attention_head_dim, |
|
bias_q=True, |
|
bias_kv=True, |
|
bias_out=True |
|
) |
|
for d in range(num_layers) |
|
]) |
|
|
|
def forward(self, hidden_states, time_emb, text_emb, res_stack): |
|
batch, _, height, width = hidden_states.shape |
|
residual = hidden_states |
|
|
|
hidden_states = self.norm(hidden_states) |
|
inner_dim = hidden_states.shape[1] |
|
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim) |
|
|
|
for block in self.transformer_blocks: |
|
hidden_states = block(hidden_states) |
|
|
|
hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous() |
|
hidden_states = hidden_states + residual |
|
|
|
return hidden_states, time_emb, text_emb, res_stack |
|
|
|
|
|
class TemporalResnetBlock(torch.nn.Module): |
|
|
|
def __init__(self, in_channels, out_channels, groups=32, eps=1e-5): |
|
super().__init__() |
|
self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True) |
|
self.conv1 = torch.nn.Conv3d(in_channels, out_channels, kernel_size=(3, 1, 1), stride=1, padding=(1, 0, 0)) |
|
self.norm2 = torch.nn.GroupNorm(num_groups=groups, num_channels=out_channels, eps=eps, affine=True) |
|
self.conv2 = torch.nn.Conv3d(out_channels, out_channels, kernel_size=(3, 1, 1), stride=1, padding=(1, 0, 0)) |
|
self.nonlinearity = torch.nn.SiLU() |
|
self.mix_factor = torch.nn.Parameter(torch.Tensor([0.5])) |
|
|
|
def forward(self, hidden_states, time_emb, text_emb, res_stack, **kwargs): |
|
x_spatial = hidden_states |
|
x = rearrange(hidden_states, "T C H W -> 1 C T H W") |
|
x = self.norm1(x) |
|
x = self.nonlinearity(x) |
|
x = self.conv1(x) |
|
x = self.norm2(x) |
|
x = self.nonlinearity(x) |
|
x = self.conv2(x) |
|
x_temporal = hidden_states + x[0].permute(1, 0, 2, 3) |
|
alpha = torch.sigmoid(self.mix_factor) |
|
hidden_states = alpha * x_temporal + (1 - alpha) * x_spatial |
|
return hidden_states, time_emb, text_emb, res_stack |
|
|
|
|
|
class SVDVAEDecoder(torch.nn.Module): |
|
def __init__(self): |
|
super().__init__() |
|
self.scaling_factor = 0.18215 |
|
self.conv_in = torch.nn.Conv2d(4, 512, kernel_size=3, padding=1) |
|
|
|
self.blocks = torch.nn.ModuleList([ |
|
|
|
ResnetBlock(512, 512, eps=1e-6), |
|
TemporalResnetBlock(512, 512, eps=1e-6), |
|
VAEAttentionBlock(1, 512, 512, 1, eps=1e-6), |
|
ResnetBlock(512, 512, eps=1e-6), |
|
TemporalResnetBlock(512, 512, eps=1e-6), |
|
|
|
ResnetBlock(512, 512, eps=1e-6), |
|
TemporalResnetBlock(512, 512, eps=1e-6), |
|
ResnetBlock(512, 512, eps=1e-6), |
|
TemporalResnetBlock(512, 512, eps=1e-6), |
|
ResnetBlock(512, 512, eps=1e-6), |
|
TemporalResnetBlock(512, 512, eps=1e-6), |
|
UpSampler(512), |
|
|
|
ResnetBlock(512, 512, eps=1e-6), |
|
TemporalResnetBlock(512, 512, eps=1e-6), |
|
ResnetBlock(512, 512, eps=1e-6), |
|
TemporalResnetBlock(512, 512, eps=1e-6), |
|
ResnetBlock(512, 512, eps=1e-6), |
|
TemporalResnetBlock(512, 512, eps=1e-6), |
|
UpSampler(512), |
|
|
|
ResnetBlock(512, 256, eps=1e-6), |
|
TemporalResnetBlock(256, 256, eps=1e-6), |
|
ResnetBlock(256, 256, eps=1e-6), |
|
TemporalResnetBlock(256, 256, eps=1e-6), |
|
ResnetBlock(256, 256, eps=1e-6), |
|
TemporalResnetBlock(256, 256, eps=1e-6), |
|
UpSampler(256), |
|
|
|
ResnetBlock(256, 128, eps=1e-6), |
|
TemporalResnetBlock(128, 128, eps=1e-6), |
|
ResnetBlock(128, 128, eps=1e-6), |
|
TemporalResnetBlock(128, 128, eps=1e-6), |
|
ResnetBlock(128, 128, eps=1e-6), |
|
TemporalResnetBlock(128, 128, eps=1e-6), |
|
]) |
|
|
|
self.conv_norm_out = torch.nn.GroupNorm(num_channels=128, num_groups=32, eps=1e-5) |
|
self.conv_act = torch.nn.SiLU() |
|
self.conv_out = torch.nn.Conv2d(128, 3, kernel_size=3, padding=1) |
|
self.time_conv_out = torch.nn.Conv3d(3, 3, kernel_size=(3, 1, 1), padding=(1, 0, 0)) |
|
|
|
|
|
def forward(self, sample): |
|
|
|
hidden_states = rearrange(sample, "C T H W -> T C H W") |
|
hidden_states = hidden_states / self.scaling_factor |
|
hidden_states = self.conv_in(hidden_states) |
|
time_emb, text_emb, res_stack = None, None, None |
|
|
|
|
|
for i, block in enumerate(self.blocks): |
|
hidden_states, time_emb, text_emb, res_stack = block(hidden_states, time_emb, text_emb, res_stack) |
|
|
|
|
|
hidden_states = self.conv_norm_out(hidden_states) |
|
hidden_states = self.conv_act(hidden_states) |
|
hidden_states = self.conv_out(hidden_states) |
|
hidden_states = rearrange(hidden_states, "T C H W -> C T H W") |
|
hidden_states = self.time_conv_out(hidden_states) |
|
|
|
return hidden_states |
|
|
|
|
|
def build_mask(self, data, is_bound): |
|
_, T, H, W = data.shape |
|
t = repeat(torch.arange(T), "T -> T H W", T=T, H=H, W=W) |
|
h = repeat(torch.arange(H), "H -> T H W", T=T, H=H, W=W) |
|
w = repeat(torch.arange(W), "W -> T H W", T=T, H=H, W=W) |
|
border_width = (T + H + W) // 6 |
|
pad = torch.ones_like(t) * border_width |
|
mask = torch.stack([ |
|
pad if is_bound[0] else t + 1, |
|
pad if is_bound[1] else T - t, |
|
pad if is_bound[2] else h + 1, |
|
pad if is_bound[3] else H - h, |
|
pad if is_bound[4] else w + 1, |
|
pad if is_bound[5] else W - w |
|
]).min(dim=0).values |
|
mask = mask.clip(1, border_width) |
|
mask = (mask / border_width).to(dtype=data.dtype, device=data.device) |
|
mask = rearrange(mask, "T H W -> 1 T H W") |
|
return mask |
|
|
|
|
|
def decode_video( |
|
self, sample, |
|
batch_time=8, batch_height=128, batch_width=128, |
|
stride_time=4, stride_height=32, stride_width=32, |
|
progress_bar=lambda x:x |
|
): |
|
sample = sample.permute(1, 0, 2, 3) |
|
data_device = sample.device |
|
computation_device = self.conv_in.weight.device |
|
torch_dtype = sample.dtype |
|
_, T, H, W = sample.shape |
|
|
|
weight = torch.zeros((1, T, H*8, W*8), dtype=torch_dtype, device=data_device) |
|
values = torch.zeros((3, T, H*8, W*8), dtype=torch_dtype, device=data_device) |
|
|
|
|
|
tasks = [] |
|
for t in range(0, T, stride_time): |
|
for h in range(0, H, stride_height): |
|
for w in range(0, W, stride_width): |
|
if (t-stride_time >= 0 and t-stride_time+batch_time >= T)\ |
|
or (h-stride_height >= 0 and h-stride_height+batch_height >= H)\ |
|
or (w-stride_width >= 0 and w-stride_width+batch_width >= W): |
|
continue |
|
tasks.append((t, t+batch_time, h, h+batch_height, w, w+batch_width)) |
|
|
|
|
|
for tl, tr, hl, hr, wl, wr in progress_bar(tasks): |
|
sample_batch = sample[:, tl:tr, hl:hr, wl:wr].to(computation_device) |
|
sample_batch = self.forward(sample_batch).to(data_device) |
|
mask = self.build_mask(sample_batch, is_bound=(tl==0, tr>=T, hl==0, hr>=H, wl==0, wr>=W)) |
|
values[:, tl:tr, hl*8:hr*8, wl*8:wr*8] += sample_batch * mask |
|
weight[:, tl:tr, hl*8:hr*8, wl*8:wr*8] += mask |
|
values /= weight |
|
return values |
|
|
|
|
|
@staticmethod |
|
def state_dict_converter(): |
|
return SVDVAEDecoderStateDictConverter() |
|
|
|
|
|
class SVDVAEDecoderStateDictConverter: |
|
def __init__(self): |
|
pass |
|
|
|
def from_diffusers(self, state_dict): |
|
static_rename_dict = { |
|
"decoder.conv_in": "conv_in", |
|
"decoder.mid_block.attentions.0.group_norm": "blocks.2.norm", |
|
"decoder.mid_block.attentions.0.to_q": "blocks.2.transformer_blocks.0.to_q", |
|
"decoder.mid_block.attentions.0.to_k": "blocks.2.transformer_blocks.0.to_k", |
|
"decoder.mid_block.attentions.0.to_v": "blocks.2.transformer_blocks.0.to_v", |
|
"decoder.mid_block.attentions.0.to_out.0": "blocks.2.transformer_blocks.0.to_out", |
|
"decoder.up_blocks.0.upsamplers.0.conv": "blocks.11.conv", |
|
"decoder.up_blocks.1.upsamplers.0.conv": "blocks.18.conv", |
|
"decoder.up_blocks.2.upsamplers.0.conv": "blocks.25.conv", |
|
"decoder.conv_norm_out": "conv_norm_out", |
|
"decoder.conv_out": "conv_out", |
|
"decoder.time_conv_out": "time_conv_out" |
|
} |
|
prefix_rename_dict = { |
|
"decoder.mid_block.resnets.0.spatial_res_block": "blocks.0", |
|
"decoder.mid_block.resnets.0.temporal_res_block": "blocks.1", |
|
"decoder.mid_block.resnets.0.time_mixer": "blocks.1", |
|
"decoder.mid_block.resnets.1.spatial_res_block": "blocks.3", |
|
"decoder.mid_block.resnets.1.temporal_res_block": "blocks.4", |
|
"decoder.mid_block.resnets.1.time_mixer": "blocks.4", |
|
|
|
"decoder.up_blocks.0.resnets.0.spatial_res_block": "blocks.5", |
|
"decoder.up_blocks.0.resnets.0.temporal_res_block": "blocks.6", |
|
"decoder.up_blocks.0.resnets.0.time_mixer": "blocks.6", |
|
"decoder.up_blocks.0.resnets.1.spatial_res_block": "blocks.7", |
|
"decoder.up_blocks.0.resnets.1.temporal_res_block": "blocks.8", |
|
"decoder.up_blocks.0.resnets.1.time_mixer": "blocks.8", |
|
"decoder.up_blocks.0.resnets.2.spatial_res_block": "blocks.9", |
|
"decoder.up_blocks.0.resnets.2.temporal_res_block": "blocks.10", |
|
"decoder.up_blocks.0.resnets.2.time_mixer": "blocks.10", |
|
|
|
"decoder.up_blocks.1.resnets.0.spatial_res_block": "blocks.12", |
|
"decoder.up_blocks.1.resnets.0.temporal_res_block": "blocks.13", |
|
"decoder.up_blocks.1.resnets.0.time_mixer": "blocks.13", |
|
"decoder.up_blocks.1.resnets.1.spatial_res_block": "blocks.14", |
|
"decoder.up_blocks.1.resnets.1.temporal_res_block": "blocks.15", |
|
"decoder.up_blocks.1.resnets.1.time_mixer": "blocks.15", |
|
"decoder.up_blocks.1.resnets.2.spatial_res_block": "blocks.16", |
|
"decoder.up_blocks.1.resnets.2.temporal_res_block": "blocks.17", |
|
"decoder.up_blocks.1.resnets.2.time_mixer": "blocks.17", |
|
|
|
"decoder.up_blocks.2.resnets.0.spatial_res_block": "blocks.19", |
|
"decoder.up_blocks.2.resnets.0.temporal_res_block": "blocks.20", |
|
"decoder.up_blocks.2.resnets.0.time_mixer": "blocks.20", |
|
"decoder.up_blocks.2.resnets.1.spatial_res_block": "blocks.21", |
|
"decoder.up_blocks.2.resnets.1.temporal_res_block": "blocks.22", |
|
"decoder.up_blocks.2.resnets.1.time_mixer": "blocks.22", |
|
"decoder.up_blocks.2.resnets.2.spatial_res_block": "blocks.23", |
|
"decoder.up_blocks.2.resnets.2.temporal_res_block": "blocks.24", |
|
"decoder.up_blocks.2.resnets.2.time_mixer": "blocks.24", |
|
|
|
"decoder.up_blocks.3.resnets.0.spatial_res_block": "blocks.26", |
|
"decoder.up_blocks.3.resnets.0.temporal_res_block": "blocks.27", |
|
"decoder.up_blocks.3.resnets.0.time_mixer": "blocks.27", |
|
"decoder.up_blocks.3.resnets.1.spatial_res_block": "blocks.28", |
|
"decoder.up_blocks.3.resnets.1.temporal_res_block": "blocks.29", |
|
"decoder.up_blocks.3.resnets.1.time_mixer": "blocks.29", |
|
"decoder.up_blocks.3.resnets.2.spatial_res_block": "blocks.30", |
|
"decoder.up_blocks.3.resnets.2.temporal_res_block": "blocks.31", |
|
"decoder.up_blocks.3.resnets.2.time_mixer": "blocks.31", |
|
} |
|
suffix_rename_dict = { |
|
"norm1.weight": "norm1.weight", |
|
"conv1.weight": "conv1.weight", |
|
"norm2.weight": "norm2.weight", |
|
"conv2.weight": "conv2.weight", |
|
"conv_shortcut.weight": "conv_shortcut.weight", |
|
"norm1.bias": "norm1.bias", |
|
"conv1.bias": "conv1.bias", |
|
"norm2.bias": "norm2.bias", |
|
"conv2.bias": "conv2.bias", |
|
"conv_shortcut.bias": "conv_shortcut.bias", |
|
"mix_factor": "mix_factor", |
|
} |
|
|
|
state_dict_ = {} |
|
for name in static_rename_dict: |
|
state_dict_[static_rename_dict[name] + ".weight"] = state_dict[name + ".weight"] |
|
state_dict_[static_rename_dict[name] + ".bias"] = state_dict[name + ".bias"] |
|
for prefix_name in prefix_rename_dict: |
|
for suffix_name in suffix_rename_dict: |
|
name = prefix_name + "." + suffix_name |
|
name_ = prefix_rename_dict[prefix_name] + "." + suffix_rename_dict[suffix_name] |
|
if name in state_dict: |
|
state_dict_[name_] = state_dict[name] |
|
|
|
return state_dict_ |
|
|
|
|
|
def from_civitai(self, state_dict): |
|
rename_dict = { |
|
"first_stage_model.decoder.conv_in.bias": "conv_in.bias", |
|
"first_stage_model.decoder.conv_in.weight": "conv_in.weight", |
|
"first_stage_model.decoder.conv_out.bias": "conv_out.bias", |
|
"first_stage_model.decoder.conv_out.time_mix_conv.bias": "time_conv_out.bias", |
|
"first_stage_model.decoder.conv_out.time_mix_conv.weight": "time_conv_out.weight", |
|
"first_stage_model.decoder.conv_out.weight": "conv_out.weight", |
|
"first_stage_model.decoder.mid.attn_1.k.bias": "blocks.2.transformer_blocks.0.to_k.bias", |
|
"first_stage_model.decoder.mid.attn_1.k.weight": "blocks.2.transformer_blocks.0.to_k.weight", |
|
"first_stage_model.decoder.mid.attn_1.norm.bias": "blocks.2.norm.bias", |
|
"first_stage_model.decoder.mid.attn_1.norm.weight": "blocks.2.norm.weight", |
|
"first_stage_model.decoder.mid.attn_1.proj_out.bias": "blocks.2.transformer_blocks.0.to_out.bias", |
|
"first_stage_model.decoder.mid.attn_1.proj_out.weight": "blocks.2.transformer_blocks.0.to_out.weight", |
|
"first_stage_model.decoder.mid.attn_1.q.bias": "blocks.2.transformer_blocks.0.to_q.bias", |
|
"first_stage_model.decoder.mid.attn_1.q.weight": "blocks.2.transformer_blocks.0.to_q.weight", |
|
"first_stage_model.decoder.mid.attn_1.v.bias": "blocks.2.transformer_blocks.0.to_v.bias", |
|
"first_stage_model.decoder.mid.attn_1.v.weight": "blocks.2.transformer_blocks.0.to_v.weight", |
|
"first_stage_model.decoder.mid.block_1.conv1.bias": "blocks.0.conv1.bias", |
|
"first_stage_model.decoder.mid.block_1.conv1.weight": "blocks.0.conv1.weight", |
|
"first_stage_model.decoder.mid.block_1.conv2.bias": "blocks.0.conv2.bias", |
|
"first_stage_model.decoder.mid.block_1.conv2.weight": "blocks.0.conv2.weight", |
|
"first_stage_model.decoder.mid.block_1.mix_factor": "blocks.1.mix_factor", |
|
"first_stage_model.decoder.mid.block_1.norm1.bias": "blocks.0.norm1.bias", |
|
"first_stage_model.decoder.mid.block_1.norm1.weight": "blocks.0.norm1.weight", |
|
"first_stage_model.decoder.mid.block_1.norm2.bias": "blocks.0.norm2.bias", |
|
"first_stage_model.decoder.mid.block_1.norm2.weight": "blocks.0.norm2.weight", |
|
"first_stage_model.decoder.mid.block_1.time_stack.in_layers.0.bias": "blocks.1.norm1.bias", |
|
"first_stage_model.decoder.mid.block_1.time_stack.in_layers.0.weight": "blocks.1.norm1.weight", |
|
"first_stage_model.decoder.mid.block_1.time_stack.in_layers.2.bias": "blocks.1.conv1.bias", |
|
"first_stage_model.decoder.mid.block_1.time_stack.in_layers.2.weight": "blocks.1.conv1.weight", |
|
"first_stage_model.decoder.mid.block_1.time_stack.out_layers.0.bias": "blocks.1.norm2.bias", |
|
"first_stage_model.decoder.mid.block_1.time_stack.out_layers.0.weight": "blocks.1.norm2.weight", |
|
"first_stage_model.decoder.mid.block_1.time_stack.out_layers.3.bias": "blocks.1.conv2.bias", |
|
"first_stage_model.decoder.mid.block_1.time_stack.out_layers.3.weight": "blocks.1.conv2.weight", |
|
"first_stage_model.decoder.mid.block_2.conv1.bias": "blocks.3.conv1.bias", |
|
"first_stage_model.decoder.mid.block_2.conv1.weight": "blocks.3.conv1.weight", |
|
"first_stage_model.decoder.mid.block_2.conv2.bias": "blocks.3.conv2.bias", |
|
"first_stage_model.decoder.mid.block_2.conv2.weight": "blocks.3.conv2.weight", |
|
"first_stage_model.decoder.mid.block_2.mix_factor": "blocks.4.mix_factor", |
|
"first_stage_model.decoder.mid.block_2.norm1.bias": "blocks.3.norm1.bias", |
|
"first_stage_model.decoder.mid.block_2.norm1.weight": "blocks.3.norm1.weight", |
|
"first_stage_model.decoder.mid.block_2.norm2.bias": "blocks.3.norm2.bias", |
|
"first_stage_model.decoder.mid.block_2.norm2.weight": "blocks.3.norm2.weight", |
|
"first_stage_model.decoder.mid.block_2.time_stack.in_layers.0.bias": "blocks.4.norm1.bias", |
|
"first_stage_model.decoder.mid.block_2.time_stack.in_layers.0.weight": "blocks.4.norm1.weight", |
|
"first_stage_model.decoder.mid.block_2.time_stack.in_layers.2.bias": "blocks.4.conv1.bias", |
|
"first_stage_model.decoder.mid.block_2.time_stack.in_layers.2.weight": "blocks.4.conv1.weight", |
|
"first_stage_model.decoder.mid.block_2.time_stack.out_layers.0.bias": "blocks.4.norm2.bias", |
|
"first_stage_model.decoder.mid.block_2.time_stack.out_layers.0.weight": "blocks.4.norm2.weight", |
|
"first_stage_model.decoder.mid.block_2.time_stack.out_layers.3.bias": "blocks.4.conv2.bias", |
|
"first_stage_model.decoder.mid.block_2.time_stack.out_layers.3.weight": "blocks.4.conv2.weight", |
|
"first_stage_model.decoder.norm_out.bias": "conv_norm_out.bias", |
|
"first_stage_model.decoder.norm_out.weight": "conv_norm_out.weight", |
|
"first_stage_model.decoder.up.0.block.0.conv1.bias": "blocks.26.conv1.bias", |
|
"first_stage_model.decoder.up.0.block.0.conv1.weight": "blocks.26.conv1.weight", |
|
"first_stage_model.decoder.up.0.block.0.conv2.bias": "blocks.26.conv2.bias", |
|
"first_stage_model.decoder.up.0.block.0.conv2.weight": "blocks.26.conv2.weight", |
|
"first_stage_model.decoder.up.0.block.0.mix_factor": "blocks.27.mix_factor", |
|
"first_stage_model.decoder.up.0.block.0.nin_shortcut.bias": "blocks.26.conv_shortcut.bias", |
|
"first_stage_model.decoder.up.0.block.0.nin_shortcut.weight": "blocks.26.conv_shortcut.weight", |
|
"first_stage_model.decoder.up.0.block.0.norm1.bias": "blocks.26.norm1.bias", |
|
"first_stage_model.decoder.up.0.block.0.norm1.weight": "blocks.26.norm1.weight", |
|
"first_stage_model.decoder.up.0.block.0.norm2.bias": "blocks.26.norm2.bias", |
|
"first_stage_model.decoder.up.0.block.0.norm2.weight": "blocks.26.norm2.weight", |
|
"first_stage_model.decoder.up.0.block.0.time_stack.in_layers.0.bias": "blocks.27.norm1.bias", |
|
"first_stage_model.decoder.up.0.block.0.time_stack.in_layers.0.weight": "blocks.27.norm1.weight", |
|
"first_stage_model.decoder.up.0.block.0.time_stack.in_layers.2.bias": "blocks.27.conv1.bias", |
|
"first_stage_model.decoder.up.0.block.0.time_stack.in_layers.2.weight": "blocks.27.conv1.weight", |
|
"first_stage_model.decoder.up.0.block.0.time_stack.out_layers.0.bias": "blocks.27.norm2.bias", |
|
"first_stage_model.decoder.up.0.block.0.time_stack.out_layers.0.weight": "blocks.27.norm2.weight", |
|
"first_stage_model.decoder.up.0.block.0.time_stack.out_layers.3.bias": "blocks.27.conv2.bias", |
|
"first_stage_model.decoder.up.0.block.0.time_stack.out_layers.3.weight": "blocks.27.conv2.weight", |
|
"first_stage_model.decoder.up.0.block.1.conv1.bias": "blocks.28.conv1.bias", |
|
"first_stage_model.decoder.up.0.block.1.conv1.weight": "blocks.28.conv1.weight", |
|
"first_stage_model.decoder.up.0.block.1.conv2.bias": "blocks.28.conv2.bias", |
|
"first_stage_model.decoder.up.0.block.1.conv2.weight": "blocks.28.conv2.weight", |
|
"first_stage_model.decoder.up.0.block.1.mix_factor": "blocks.29.mix_factor", |
|
"first_stage_model.decoder.up.0.block.1.norm1.bias": "blocks.28.norm1.bias", |
|
"first_stage_model.decoder.up.0.block.1.norm1.weight": "blocks.28.norm1.weight", |
|
"first_stage_model.decoder.up.0.block.1.norm2.bias": "blocks.28.norm2.bias", |
|
"first_stage_model.decoder.up.0.block.1.norm2.weight": "blocks.28.norm2.weight", |
|
"first_stage_model.decoder.up.0.block.1.time_stack.in_layers.0.bias": "blocks.29.norm1.bias", |
|
"first_stage_model.decoder.up.0.block.1.time_stack.in_layers.0.weight": "blocks.29.norm1.weight", |
|
"first_stage_model.decoder.up.0.block.1.time_stack.in_layers.2.bias": "blocks.29.conv1.bias", |
|
"first_stage_model.decoder.up.0.block.1.time_stack.in_layers.2.weight": "blocks.29.conv1.weight", |
|
"first_stage_model.decoder.up.0.block.1.time_stack.out_layers.0.bias": "blocks.29.norm2.bias", |
|
"first_stage_model.decoder.up.0.block.1.time_stack.out_layers.0.weight": "blocks.29.norm2.weight", |
|
"first_stage_model.decoder.up.0.block.1.time_stack.out_layers.3.bias": "blocks.29.conv2.bias", |
|
"first_stage_model.decoder.up.0.block.1.time_stack.out_layers.3.weight": "blocks.29.conv2.weight", |
|
"first_stage_model.decoder.up.0.block.2.conv1.bias": "blocks.30.conv1.bias", |
|
"first_stage_model.decoder.up.0.block.2.conv1.weight": "blocks.30.conv1.weight", |
|
"first_stage_model.decoder.up.0.block.2.conv2.bias": "blocks.30.conv2.bias", |
|
"first_stage_model.decoder.up.0.block.2.conv2.weight": "blocks.30.conv2.weight", |
|
"first_stage_model.decoder.up.0.block.2.mix_factor": "blocks.31.mix_factor", |
|
"first_stage_model.decoder.up.0.block.2.norm1.bias": "blocks.30.norm1.bias", |
|
"first_stage_model.decoder.up.0.block.2.norm1.weight": "blocks.30.norm1.weight", |
|
"first_stage_model.decoder.up.0.block.2.norm2.bias": "blocks.30.norm2.bias", |
|
"first_stage_model.decoder.up.0.block.2.norm2.weight": "blocks.30.norm2.weight", |
|
"first_stage_model.decoder.up.0.block.2.time_stack.in_layers.0.bias": "blocks.31.norm1.bias", |
|
"first_stage_model.decoder.up.0.block.2.time_stack.in_layers.0.weight": "blocks.31.norm1.weight", |
|
"first_stage_model.decoder.up.0.block.2.time_stack.in_layers.2.bias": "blocks.31.conv1.bias", |
|
"first_stage_model.decoder.up.0.block.2.time_stack.in_layers.2.weight": "blocks.31.conv1.weight", |
|
"first_stage_model.decoder.up.0.block.2.time_stack.out_layers.0.bias": "blocks.31.norm2.bias", |
|
"first_stage_model.decoder.up.0.block.2.time_stack.out_layers.0.weight": "blocks.31.norm2.weight", |
|
"first_stage_model.decoder.up.0.block.2.time_stack.out_layers.3.bias": "blocks.31.conv2.bias", |
|
"first_stage_model.decoder.up.0.block.2.time_stack.out_layers.3.weight": "blocks.31.conv2.weight", |
|
"first_stage_model.decoder.up.1.block.0.conv1.bias": "blocks.19.conv1.bias", |
|
"first_stage_model.decoder.up.1.block.0.conv1.weight": "blocks.19.conv1.weight", |
|
"first_stage_model.decoder.up.1.block.0.conv2.bias": "blocks.19.conv2.bias", |
|
"first_stage_model.decoder.up.1.block.0.conv2.weight": "blocks.19.conv2.weight", |
|
"first_stage_model.decoder.up.1.block.0.mix_factor": "blocks.20.mix_factor", |
|
"first_stage_model.decoder.up.1.block.0.nin_shortcut.bias": "blocks.19.conv_shortcut.bias", |
|
"first_stage_model.decoder.up.1.block.0.nin_shortcut.weight": "blocks.19.conv_shortcut.weight", |
|
"first_stage_model.decoder.up.1.block.0.norm1.bias": "blocks.19.norm1.bias", |
|
"first_stage_model.decoder.up.1.block.0.norm1.weight": "blocks.19.norm1.weight", |
|
"first_stage_model.decoder.up.1.block.0.norm2.bias": "blocks.19.norm2.bias", |
|
"first_stage_model.decoder.up.1.block.0.norm2.weight": "blocks.19.norm2.weight", |
|
"first_stage_model.decoder.up.1.block.0.time_stack.in_layers.0.bias": "blocks.20.norm1.bias", |
|
"first_stage_model.decoder.up.1.block.0.time_stack.in_layers.0.weight": "blocks.20.norm1.weight", |
|
"first_stage_model.decoder.up.1.block.0.time_stack.in_layers.2.bias": "blocks.20.conv1.bias", |
|
"first_stage_model.decoder.up.1.block.0.time_stack.in_layers.2.weight": "blocks.20.conv1.weight", |
|
"first_stage_model.decoder.up.1.block.0.time_stack.out_layers.0.bias": "blocks.20.norm2.bias", |
|
"first_stage_model.decoder.up.1.block.0.time_stack.out_layers.0.weight": "blocks.20.norm2.weight", |
|
"first_stage_model.decoder.up.1.block.0.time_stack.out_layers.3.bias": "blocks.20.conv2.bias", |
|
"first_stage_model.decoder.up.1.block.0.time_stack.out_layers.3.weight": "blocks.20.conv2.weight", |
|
"first_stage_model.decoder.up.1.block.1.conv1.bias": "blocks.21.conv1.bias", |
|
"first_stage_model.decoder.up.1.block.1.conv1.weight": "blocks.21.conv1.weight", |
|
"first_stage_model.decoder.up.1.block.1.conv2.bias": "blocks.21.conv2.bias", |
|
"first_stage_model.decoder.up.1.block.1.conv2.weight": "blocks.21.conv2.weight", |
|
"first_stage_model.decoder.up.1.block.1.mix_factor": "blocks.22.mix_factor", |
|
"first_stage_model.decoder.up.1.block.1.norm1.bias": "blocks.21.norm1.bias", |
|
"first_stage_model.decoder.up.1.block.1.norm1.weight": "blocks.21.norm1.weight", |
|
"first_stage_model.decoder.up.1.block.1.norm2.bias": "blocks.21.norm2.bias", |
|
"first_stage_model.decoder.up.1.block.1.norm2.weight": "blocks.21.norm2.weight", |
|
"first_stage_model.decoder.up.1.block.1.time_stack.in_layers.0.bias": "blocks.22.norm1.bias", |
|
"first_stage_model.decoder.up.1.block.1.time_stack.in_layers.0.weight": "blocks.22.norm1.weight", |
|
"first_stage_model.decoder.up.1.block.1.time_stack.in_layers.2.bias": "blocks.22.conv1.bias", |
|
"first_stage_model.decoder.up.1.block.1.time_stack.in_layers.2.weight": "blocks.22.conv1.weight", |
|
"first_stage_model.decoder.up.1.block.1.time_stack.out_layers.0.bias": "blocks.22.norm2.bias", |
|
"first_stage_model.decoder.up.1.block.1.time_stack.out_layers.0.weight": "blocks.22.norm2.weight", |
|
"first_stage_model.decoder.up.1.block.1.time_stack.out_layers.3.bias": "blocks.22.conv2.bias", |
|
"first_stage_model.decoder.up.1.block.1.time_stack.out_layers.3.weight": "blocks.22.conv2.weight", |
|
"first_stage_model.decoder.up.1.block.2.conv1.bias": "blocks.23.conv1.bias", |
|
"first_stage_model.decoder.up.1.block.2.conv1.weight": "blocks.23.conv1.weight", |
|
"first_stage_model.decoder.up.1.block.2.conv2.bias": "blocks.23.conv2.bias", |
|
"first_stage_model.decoder.up.1.block.2.conv2.weight": "blocks.23.conv2.weight", |
|
"first_stage_model.decoder.up.1.block.2.mix_factor": "blocks.24.mix_factor", |
|
"first_stage_model.decoder.up.1.block.2.norm1.bias": "blocks.23.norm1.bias", |
|
"first_stage_model.decoder.up.1.block.2.norm1.weight": "blocks.23.norm1.weight", |
|
"first_stage_model.decoder.up.1.block.2.norm2.bias": "blocks.23.norm2.bias", |
|
"first_stage_model.decoder.up.1.block.2.norm2.weight": "blocks.23.norm2.weight", |
|
"first_stage_model.decoder.up.1.block.2.time_stack.in_layers.0.bias": "blocks.24.norm1.bias", |
|
"first_stage_model.decoder.up.1.block.2.time_stack.in_layers.0.weight": "blocks.24.norm1.weight", |
|
"first_stage_model.decoder.up.1.block.2.time_stack.in_layers.2.bias": "blocks.24.conv1.bias", |
|
"first_stage_model.decoder.up.1.block.2.time_stack.in_layers.2.weight": "blocks.24.conv1.weight", |
|
"first_stage_model.decoder.up.1.block.2.time_stack.out_layers.0.bias": "blocks.24.norm2.bias", |
|
"first_stage_model.decoder.up.1.block.2.time_stack.out_layers.0.weight": "blocks.24.norm2.weight", |
|
"first_stage_model.decoder.up.1.block.2.time_stack.out_layers.3.bias": "blocks.24.conv2.bias", |
|
"first_stage_model.decoder.up.1.block.2.time_stack.out_layers.3.weight": "blocks.24.conv2.weight", |
|
"first_stage_model.decoder.up.1.upsample.conv.bias": "blocks.25.conv.bias", |
|
"first_stage_model.decoder.up.1.upsample.conv.weight": "blocks.25.conv.weight", |
|
"first_stage_model.decoder.up.2.block.0.conv1.bias": "blocks.12.conv1.bias", |
|
"first_stage_model.decoder.up.2.block.0.conv1.weight": "blocks.12.conv1.weight", |
|
"first_stage_model.decoder.up.2.block.0.conv2.bias": "blocks.12.conv2.bias", |
|
"first_stage_model.decoder.up.2.block.0.conv2.weight": "blocks.12.conv2.weight", |
|
"first_stage_model.decoder.up.2.block.0.mix_factor": "blocks.13.mix_factor", |
|
"first_stage_model.decoder.up.2.block.0.norm1.bias": "blocks.12.norm1.bias", |
|
"first_stage_model.decoder.up.2.block.0.norm1.weight": "blocks.12.norm1.weight", |
|
"first_stage_model.decoder.up.2.block.0.norm2.bias": "blocks.12.norm2.bias", |
|
"first_stage_model.decoder.up.2.block.0.norm2.weight": "blocks.12.norm2.weight", |
|
"first_stage_model.decoder.up.2.block.0.time_stack.in_layers.0.bias": "blocks.13.norm1.bias", |
|
"first_stage_model.decoder.up.2.block.0.time_stack.in_layers.0.weight": "blocks.13.norm1.weight", |
|
"first_stage_model.decoder.up.2.block.0.time_stack.in_layers.2.bias": "blocks.13.conv1.bias", |
|
"first_stage_model.decoder.up.2.block.0.time_stack.in_layers.2.weight": "blocks.13.conv1.weight", |
|
"first_stage_model.decoder.up.2.block.0.time_stack.out_layers.0.bias": "blocks.13.norm2.bias", |
|
"first_stage_model.decoder.up.2.block.0.time_stack.out_layers.0.weight": "blocks.13.norm2.weight", |
|
"first_stage_model.decoder.up.2.block.0.time_stack.out_layers.3.bias": "blocks.13.conv2.bias", |
|
"first_stage_model.decoder.up.2.block.0.time_stack.out_layers.3.weight": "blocks.13.conv2.weight", |
|
"first_stage_model.decoder.up.2.block.1.conv1.bias": "blocks.14.conv1.bias", |
|
"first_stage_model.decoder.up.2.block.1.conv1.weight": "blocks.14.conv1.weight", |
|
"first_stage_model.decoder.up.2.block.1.conv2.bias": "blocks.14.conv2.bias", |
|
"first_stage_model.decoder.up.2.block.1.conv2.weight": "blocks.14.conv2.weight", |
|
"first_stage_model.decoder.up.2.block.1.mix_factor": "blocks.15.mix_factor", |
|
"first_stage_model.decoder.up.2.block.1.norm1.bias": "blocks.14.norm1.bias", |
|
"first_stage_model.decoder.up.2.block.1.norm1.weight": "blocks.14.norm1.weight", |
|
"first_stage_model.decoder.up.2.block.1.norm2.bias": "blocks.14.norm2.bias", |
|
"first_stage_model.decoder.up.2.block.1.norm2.weight": "blocks.14.norm2.weight", |
|
"first_stage_model.decoder.up.2.block.1.time_stack.in_layers.0.bias": "blocks.15.norm1.bias", |
|
"first_stage_model.decoder.up.2.block.1.time_stack.in_layers.0.weight": "blocks.15.norm1.weight", |
|
"first_stage_model.decoder.up.2.block.1.time_stack.in_layers.2.bias": "blocks.15.conv1.bias", |
|
"first_stage_model.decoder.up.2.block.1.time_stack.in_layers.2.weight": "blocks.15.conv1.weight", |
|
"first_stage_model.decoder.up.2.block.1.time_stack.out_layers.0.bias": "blocks.15.norm2.bias", |
|
"first_stage_model.decoder.up.2.block.1.time_stack.out_layers.0.weight": "blocks.15.norm2.weight", |
|
"first_stage_model.decoder.up.2.block.1.time_stack.out_layers.3.bias": "blocks.15.conv2.bias", |
|
"first_stage_model.decoder.up.2.block.1.time_stack.out_layers.3.weight": "blocks.15.conv2.weight", |
|
"first_stage_model.decoder.up.2.block.2.conv1.bias": "blocks.16.conv1.bias", |
|
"first_stage_model.decoder.up.2.block.2.conv1.weight": "blocks.16.conv1.weight", |
|
"first_stage_model.decoder.up.2.block.2.conv2.bias": "blocks.16.conv2.bias", |
|
"first_stage_model.decoder.up.2.block.2.conv2.weight": "blocks.16.conv2.weight", |
|
"first_stage_model.decoder.up.2.block.2.mix_factor": "blocks.17.mix_factor", |
|
"first_stage_model.decoder.up.2.block.2.norm1.bias": "blocks.16.norm1.bias", |
|
"first_stage_model.decoder.up.2.block.2.norm1.weight": "blocks.16.norm1.weight", |
|
"first_stage_model.decoder.up.2.block.2.norm2.bias": "blocks.16.norm2.bias", |
|
"first_stage_model.decoder.up.2.block.2.norm2.weight": "blocks.16.norm2.weight", |
|
"first_stage_model.decoder.up.2.block.2.time_stack.in_layers.0.bias": "blocks.17.norm1.bias", |
|
"first_stage_model.decoder.up.2.block.2.time_stack.in_layers.0.weight": "blocks.17.norm1.weight", |
|
"first_stage_model.decoder.up.2.block.2.time_stack.in_layers.2.bias": "blocks.17.conv1.bias", |
|
"first_stage_model.decoder.up.2.block.2.time_stack.in_layers.2.weight": "blocks.17.conv1.weight", |
|
"first_stage_model.decoder.up.2.block.2.time_stack.out_layers.0.bias": "blocks.17.norm2.bias", |
|
"first_stage_model.decoder.up.2.block.2.time_stack.out_layers.0.weight": "blocks.17.norm2.weight", |
|
"first_stage_model.decoder.up.2.block.2.time_stack.out_layers.3.bias": "blocks.17.conv2.bias", |
|
"first_stage_model.decoder.up.2.block.2.time_stack.out_layers.3.weight": "blocks.17.conv2.weight", |
|
"first_stage_model.decoder.up.2.upsample.conv.bias": "blocks.18.conv.bias", |
|
"first_stage_model.decoder.up.2.upsample.conv.weight": "blocks.18.conv.weight", |
|
"first_stage_model.decoder.up.3.block.0.conv1.bias": "blocks.5.conv1.bias", |
|
"first_stage_model.decoder.up.3.block.0.conv1.weight": "blocks.5.conv1.weight", |
|
"first_stage_model.decoder.up.3.block.0.conv2.bias": "blocks.5.conv2.bias", |
|
"first_stage_model.decoder.up.3.block.0.conv2.weight": "blocks.5.conv2.weight", |
|
"first_stage_model.decoder.up.3.block.0.mix_factor": "blocks.6.mix_factor", |
|
"first_stage_model.decoder.up.3.block.0.norm1.bias": "blocks.5.norm1.bias", |
|
"first_stage_model.decoder.up.3.block.0.norm1.weight": "blocks.5.norm1.weight", |
|
"first_stage_model.decoder.up.3.block.0.norm2.bias": "blocks.5.norm2.bias", |
|
"first_stage_model.decoder.up.3.block.0.norm2.weight": "blocks.5.norm2.weight", |
|
"first_stage_model.decoder.up.3.block.0.time_stack.in_layers.0.bias": "blocks.6.norm1.bias", |
|
"first_stage_model.decoder.up.3.block.0.time_stack.in_layers.0.weight": "blocks.6.norm1.weight", |
|
"first_stage_model.decoder.up.3.block.0.time_stack.in_layers.2.bias": "blocks.6.conv1.bias", |
|
"first_stage_model.decoder.up.3.block.0.time_stack.in_layers.2.weight": "blocks.6.conv1.weight", |
|
"first_stage_model.decoder.up.3.block.0.time_stack.out_layers.0.bias": "blocks.6.norm2.bias", |
|
"first_stage_model.decoder.up.3.block.0.time_stack.out_layers.0.weight": "blocks.6.norm2.weight", |
|
"first_stage_model.decoder.up.3.block.0.time_stack.out_layers.3.bias": "blocks.6.conv2.bias", |
|
"first_stage_model.decoder.up.3.block.0.time_stack.out_layers.3.weight": "blocks.6.conv2.weight", |
|
"first_stage_model.decoder.up.3.block.1.conv1.bias": "blocks.7.conv1.bias", |
|
"first_stage_model.decoder.up.3.block.1.conv1.weight": "blocks.7.conv1.weight", |
|
"first_stage_model.decoder.up.3.block.1.conv2.bias": "blocks.7.conv2.bias", |
|
"first_stage_model.decoder.up.3.block.1.conv2.weight": "blocks.7.conv2.weight", |
|
"first_stage_model.decoder.up.3.block.1.mix_factor": "blocks.8.mix_factor", |
|
"first_stage_model.decoder.up.3.block.1.norm1.bias": "blocks.7.norm1.bias", |
|
"first_stage_model.decoder.up.3.block.1.norm1.weight": "blocks.7.norm1.weight", |
|
"first_stage_model.decoder.up.3.block.1.norm2.bias": "blocks.7.norm2.bias", |
|
"first_stage_model.decoder.up.3.block.1.norm2.weight": "blocks.7.norm2.weight", |
|
"first_stage_model.decoder.up.3.block.1.time_stack.in_layers.0.bias": "blocks.8.norm1.bias", |
|
"first_stage_model.decoder.up.3.block.1.time_stack.in_layers.0.weight": "blocks.8.norm1.weight", |
|
"first_stage_model.decoder.up.3.block.1.time_stack.in_layers.2.bias": "blocks.8.conv1.bias", |
|
"first_stage_model.decoder.up.3.block.1.time_stack.in_layers.2.weight": "blocks.8.conv1.weight", |
|
"first_stage_model.decoder.up.3.block.1.time_stack.out_layers.0.bias": "blocks.8.norm2.bias", |
|
"first_stage_model.decoder.up.3.block.1.time_stack.out_layers.0.weight": "blocks.8.norm2.weight", |
|
"first_stage_model.decoder.up.3.block.1.time_stack.out_layers.3.bias": "blocks.8.conv2.bias", |
|
"first_stage_model.decoder.up.3.block.1.time_stack.out_layers.3.weight": "blocks.8.conv2.weight", |
|
"first_stage_model.decoder.up.3.block.2.conv1.bias": "blocks.9.conv1.bias", |
|
"first_stage_model.decoder.up.3.block.2.conv1.weight": "blocks.9.conv1.weight", |
|
"first_stage_model.decoder.up.3.block.2.conv2.bias": "blocks.9.conv2.bias", |
|
"first_stage_model.decoder.up.3.block.2.conv2.weight": "blocks.9.conv2.weight", |
|
"first_stage_model.decoder.up.3.block.2.mix_factor": "blocks.10.mix_factor", |
|
"first_stage_model.decoder.up.3.block.2.norm1.bias": "blocks.9.norm1.bias", |
|
"first_stage_model.decoder.up.3.block.2.norm1.weight": "blocks.9.norm1.weight", |
|
"first_stage_model.decoder.up.3.block.2.norm2.bias": "blocks.9.norm2.bias", |
|
"first_stage_model.decoder.up.3.block.2.norm2.weight": "blocks.9.norm2.weight", |
|
"first_stage_model.decoder.up.3.block.2.time_stack.in_layers.0.bias": "blocks.10.norm1.bias", |
|
"first_stage_model.decoder.up.3.block.2.time_stack.in_layers.0.weight": "blocks.10.norm1.weight", |
|
"first_stage_model.decoder.up.3.block.2.time_stack.in_layers.2.bias": "blocks.10.conv1.bias", |
|
"first_stage_model.decoder.up.3.block.2.time_stack.in_layers.2.weight": "blocks.10.conv1.weight", |
|
"first_stage_model.decoder.up.3.block.2.time_stack.out_layers.0.bias": "blocks.10.norm2.bias", |
|
"first_stage_model.decoder.up.3.block.2.time_stack.out_layers.0.weight": "blocks.10.norm2.weight", |
|
"first_stage_model.decoder.up.3.block.2.time_stack.out_layers.3.bias": "blocks.10.conv2.bias", |
|
"first_stage_model.decoder.up.3.block.2.time_stack.out_layers.3.weight": "blocks.10.conv2.weight", |
|
"first_stage_model.decoder.up.3.upsample.conv.bias": "blocks.11.conv.bias", |
|
"first_stage_model.decoder.up.3.upsample.conv.weight": "blocks.11.conv.weight", |
|
} |
|
state_dict_ = {} |
|
for name in state_dict: |
|
if name in rename_dict: |
|
param = state_dict[name] |
|
if "blocks.2.transformer_blocks.0" in rename_dict[name]: |
|
param = param.squeeze() |
|
state_dict_[rename_dict[name]] = param |
|
return state_dict_ |
|
|