|
from ..models import ModelManager, FluxDiT, SD3TextEncoder1, FluxTextEncoder2, FluxVAEDecoder, FluxVAEEncoder, FluxIpAdapter |
|
from ..controlnets import FluxMultiControlNetManager, ControlNetUnit, ControlNetConfigUnit, Annotator |
|
from ..prompters import FluxPrompter |
|
from ..schedulers import FlowMatchScheduler |
|
from .base import BasePipeline |
|
from typing import List |
|
import torch |
|
from tqdm import tqdm |
|
import numpy as np |
|
from PIL import Image |
|
from ..models.tiler import FastTileWorker |
|
from transformers import SiglipVisionModel |
|
from copy import deepcopy |
|
from transformers.models.t5.modeling_t5 import T5LayerNorm, T5DenseActDense, T5DenseGatedActDense |
|
from ..models.flux_dit import RMSNorm |
|
from ..vram_management import enable_vram_management, AutoWrappedModule, AutoWrappedLinear |
|
|
|
|
|
class FluxImagePipeline(BasePipeline): |
|
|
|
def __init__(self, device="cuda", torch_dtype=torch.float16): |
|
super().__init__(device=device, torch_dtype=torch_dtype, height_division_factor=16, width_division_factor=16) |
|
self.scheduler = FlowMatchScheduler() |
|
self.prompter = FluxPrompter() |
|
|
|
self.text_encoder_1: SD3TextEncoder1 = None |
|
self.text_encoder_2: FluxTextEncoder2 = None |
|
self.dit: FluxDiT = None |
|
self.vae_decoder: FluxVAEDecoder = None |
|
self.vae_encoder: FluxVAEEncoder = None |
|
self.controlnet: FluxMultiControlNetManager = None |
|
self.ipadapter: FluxIpAdapter = None |
|
self.ipadapter_image_encoder: SiglipVisionModel = None |
|
self.model_names = ['text_encoder_1', 'text_encoder_2', 'dit', 'vae_decoder', 'vae_encoder', 'controlnet', 'ipadapter', 'ipadapter_image_encoder'] |
|
|
|
|
|
def enable_vram_management(self, num_persistent_param_in_dit=None): |
|
dtype = next(iter(self.text_encoder_1.parameters())).dtype |
|
enable_vram_management( |
|
self.text_encoder_1, |
|
module_map = { |
|
torch.nn.Linear: AutoWrappedLinear, |
|
torch.nn.Embedding: AutoWrappedModule, |
|
torch.nn.LayerNorm: AutoWrappedModule, |
|
}, |
|
module_config = dict( |
|
offload_dtype=dtype, |
|
offload_device="cpu", |
|
onload_dtype=dtype, |
|
onload_device="cpu", |
|
computation_dtype=self.torch_dtype, |
|
computation_device=self.device, |
|
), |
|
) |
|
dtype = next(iter(self.text_encoder_2.parameters())).dtype |
|
enable_vram_management( |
|
self.text_encoder_2, |
|
module_map = { |
|
torch.nn.Linear: AutoWrappedLinear, |
|
torch.nn.Embedding: AutoWrappedModule, |
|
T5LayerNorm: AutoWrappedModule, |
|
T5DenseActDense: AutoWrappedModule, |
|
T5DenseGatedActDense: AutoWrappedModule, |
|
}, |
|
module_config = dict( |
|
offload_dtype=dtype, |
|
offload_device="cpu", |
|
onload_dtype=dtype, |
|
onload_device="cpu", |
|
computation_dtype=self.torch_dtype, |
|
computation_device=self.device, |
|
), |
|
) |
|
dtype = next(iter(self.dit.parameters())).dtype |
|
enable_vram_management( |
|
self.dit, |
|
module_map = { |
|
RMSNorm: AutoWrappedModule, |
|
torch.nn.Linear: AutoWrappedLinear, |
|
}, |
|
module_config = dict( |
|
offload_dtype=dtype, |
|
offload_device="cpu", |
|
onload_dtype=dtype, |
|
onload_device="cuda", |
|
computation_dtype=self.torch_dtype, |
|
computation_device=self.device, |
|
), |
|
max_num_param=num_persistent_param_in_dit, |
|
overflow_module_config = dict( |
|
offload_dtype=dtype, |
|
offload_device="cpu", |
|
onload_dtype=dtype, |
|
onload_device="cpu", |
|
computation_dtype=self.torch_dtype, |
|
computation_device=self.device, |
|
), |
|
) |
|
dtype = next(iter(self.vae_decoder.parameters())).dtype |
|
enable_vram_management( |
|
self.vae_decoder, |
|
module_map = { |
|
torch.nn.Linear: AutoWrappedLinear, |
|
torch.nn.Conv2d: AutoWrappedModule, |
|
torch.nn.GroupNorm: AutoWrappedModule, |
|
}, |
|
module_config = dict( |
|
offload_dtype=dtype, |
|
offload_device="cpu", |
|
onload_dtype=dtype, |
|
onload_device="cpu", |
|
computation_dtype=self.torch_dtype, |
|
computation_device=self.device, |
|
), |
|
) |
|
dtype = next(iter(self.vae_encoder.parameters())).dtype |
|
enable_vram_management( |
|
self.vae_encoder, |
|
module_map = { |
|
torch.nn.Linear: AutoWrappedLinear, |
|
torch.nn.Conv2d: AutoWrappedModule, |
|
torch.nn.GroupNorm: AutoWrappedModule, |
|
}, |
|
module_config = dict( |
|
offload_dtype=dtype, |
|
offload_device="cpu", |
|
onload_dtype=dtype, |
|
onload_device="cpu", |
|
computation_dtype=self.torch_dtype, |
|
computation_device=self.device, |
|
), |
|
) |
|
self.enable_cpu_offload() |
|
|
|
|
|
def denoising_model(self): |
|
return self.dit |
|
|
|
|
|
def fetch_models(self, model_manager: ModelManager, controlnet_config_units: List[ControlNetConfigUnit]=[], prompt_refiner_classes=[], prompt_extender_classes=[]): |
|
self.text_encoder_1 = model_manager.fetch_model("sd3_text_encoder_1") |
|
self.text_encoder_2 = model_manager.fetch_model("flux_text_encoder_2") |
|
self.dit = model_manager.fetch_model("flux_dit") |
|
self.vae_decoder = model_manager.fetch_model("flux_vae_decoder") |
|
self.vae_encoder = model_manager.fetch_model("flux_vae_encoder") |
|
self.prompter.fetch_models(self.text_encoder_1, self.text_encoder_2) |
|
self.prompter.load_prompt_refiners(model_manager, prompt_refiner_classes) |
|
self.prompter.load_prompt_extenders(model_manager, prompt_extender_classes) |
|
|
|
|
|
controlnet_units = [] |
|
for config in controlnet_config_units: |
|
controlnet_unit = ControlNetUnit( |
|
Annotator(config.processor_id, device=self.device, skip_processor=config.skip_processor), |
|
model_manager.fetch_model("flux_controlnet", config.model_path), |
|
config.scale |
|
) |
|
controlnet_units.append(controlnet_unit) |
|
self.controlnet = FluxMultiControlNetManager(controlnet_units) |
|
|
|
|
|
self.ipadapter = model_manager.fetch_model("flux_ipadapter") |
|
self.ipadapter_image_encoder = model_manager.fetch_model("siglip_vision_model") |
|
|
|
|
|
@staticmethod |
|
def from_model_manager(model_manager: ModelManager, controlnet_config_units: List[ControlNetConfigUnit]=[], prompt_refiner_classes=[], prompt_extender_classes=[], device=None, torch_dtype=None): |
|
pipe = FluxImagePipeline( |
|
device=model_manager.device if device is None else device, |
|
torch_dtype=model_manager.torch_dtype if torch_dtype is None else torch_dtype, |
|
) |
|
pipe.fetch_models(model_manager, controlnet_config_units, prompt_refiner_classes, prompt_extender_classes) |
|
return pipe |
|
|
|
|
|
def encode_image(self, image, tiled=False, tile_size=64, tile_stride=32): |
|
latents = self.vae_encoder(image, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride) |
|
return latents |
|
|
|
|
|
def decode_image(self, latent, tiled=False, tile_size=64, tile_stride=32): |
|
image = self.vae_decoder(latent.to(self.device), tiled=tiled, tile_size=tile_size, tile_stride=tile_stride) |
|
image = self.vae_output_to_image(image) |
|
return image |
|
|
|
|
|
def encode_prompt(self, prompt, positive=True, t5_sequence_length=512): |
|
prompt_emb, pooled_prompt_emb, text_ids = self.prompter.encode_prompt( |
|
prompt, device=self.device, positive=positive, t5_sequence_length=t5_sequence_length |
|
) |
|
return {"prompt_emb": prompt_emb, "pooled_prompt_emb": pooled_prompt_emb, "text_ids": text_ids} |
|
|
|
|
|
def prepare_extra_input(self, latents=None, guidance=1.0): |
|
latent_image_ids = self.dit.prepare_image_ids(latents) |
|
guidance = torch.Tensor([guidance] * latents.shape[0]).to(device=latents.device, dtype=latents.dtype) |
|
return {"image_ids": latent_image_ids, "guidance": guidance} |
|
|
|
|
|
def apply_controlnet_mask_on_latents(self, latents, mask): |
|
mask = (self.preprocess_image(mask) + 1) / 2 |
|
mask = mask.mean(dim=1, keepdim=True) |
|
mask = mask.to(dtype=self.torch_dtype, device=self.device) |
|
mask = 1 - torch.nn.functional.interpolate(mask, size=latents.shape[-2:]) |
|
latents = torch.concat([latents, mask], dim=1) |
|
return latents |
|
|
|
|
|
def apply_controlnet_mask_on_image(self, image, mask): |
|
mask = mask.resize(image.size) |
|
mask = self.preprocess_image(mask).mean(dim=[0, 1]) |
|
image = np.array(image) |
|
image[mask > 0] = 0 |
|
image = Image.fromarray(image) |
|
return image |
|
|
|
|
|
def prepare_controlnet_input(self, controlnet_image, controlnet_inpaint_mask, tiler_kwargs): |
|
if isinstance(controlnet_image, Image.Image): |
|
controlnet_image = [controlnet_image] * len(self.controlnet.processors) |
|
|
|
controlnet_frames = [] |
|
for i in range(len(self.controlnet.processors)): |
|
|
|
image = self.controlnet.process_image(controlnet_image[i], processor_id=i)[0] |
|
if controlnet_inpaint_mask is not None and self.controlnet.processors[i].processor_id == "inpaint": |
|
image = self.apply_controlnet_mask_on_image(image, controlnet_inpaint_mask) |
|
|
|
|
|
image = self.preprocess_image(image).to(device=self.device, dtype=self.torch_dtype) |
|
|
|
|
|
image = self.encode_image(image, **tiler_kwargs) |
|
if controlnet_inpaint_mask is not None and self.controlnet.processors[i].processor_id == "inpaint": |
|
image = self.apply_controlnet_mask_on_latents(image, controlnet_inpaint_mask) |
|
|
|
|
|
controlnet_frames.append(image) |
|
return controlnet_frames |
|
|
|
|
|
def prepare_ipadapter_inputs(self, images, height=384, width=384): |
|
images = [image.convert("RGB").resize((width, height), resample=3) for image in images] |
|
images = [self.preprocess_image(image).to(device=self.device, dtype=self.torch_dtype) for image in images] |
|
return torch.cat(images, dim=0) |
|
|
|
|
|
def inpaint_fusion(self, latents, inpaint_latents, pred_noise, fg_mask, bg_mask, progress_id, background_weight=0.): |
|
|
|
inpaint_noise = (latents - inpaint_latents) / self.scheduler.sigmas[progress_id] |
|
|
|
weight = torch.ones_like(inpaint_noise) |
|
inpaint_noise[fg_mask] = pred_noise[fg_mask] |
|
inpaint_noise[bg_mask] += pred_noise[bg_mask] * background_weight |
|
weight[bg_mask] += background_weight |
|
inpaint_noise /= weight |
|
return inpaint_noise |
|
|
|
|
|
def preprocess_masks(self, masks, height, width, dim): |
|
out_masks = [] |
|
for mask in masks: |
|
mask = self.preprocess_image(mask.resize((width, height), resample=Image.NEAREST)).mean(dim=1, keepdim=True) > 0 |
|
mask = mask.repeat(1, dim, 1, 1).to(device=self.device, dtype=self.torch_dtype) |
|
out_masks.append(mask) |
|
return out_masks |
|
|
|
|
|
def prepare_entity_inputs(self, entity_prompts, entity_masks, width, height, t5_sequence_length=512, enable_eligen_inpaint=False): |
|
fg_mask, bg_mask = None, None |
|
if enable_eligen_inpaint: |
|
masks_ = deepcopy(entity_masks) |
|
fg_masks = torch.cat([self.preprocess_image(mask.resize((width//8, height//8))).mean(dim=1, keepdim=True) for mask in masks_]) |
|
fg_masks = (fg_masks > 0).float() |
|
fg_mask = fg_masks.sum(dim=0, keepdim=True).repeat(1, 16, 1, 1) > 0 |
|
bg_mask = ~fg_mask |
|
entity_masks = self.preprocess_masks(entity_masks, height//8, width//8, 1) |
|
entity_masks = torch.cat(entity_masks, dim=0).unsqueeze(0) |
|
entity_prompts = self.encode_prompt(entity_prompts, t5_sequence_length=t5_sequence_length)['prompt_emb'].unsqueeze(0) |
|
return entity_prompts, entity_masks, fg_mask, bg_mask |
|
|
|
|
|
def prepare_latents(self, input_image, height, width, seed, tiled, tile_size, tile_stride): |
|
if input_image is not None: |
|
self.load_models_to_device(['vae_encoder']) |
|
image = self.preprocess_image(input_image).to(device=self.device, dtype=self.torch_dtype) |
|
input_latents = self.encode_image(image, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride) |
|
noise = self.generate_noise((1, 16, height//8, width//8), seed=seed, device=self.device, dtype=self.torch_dtype) |
|
latents = self.scheduler.add_noise(input_latents, noise, timestep=self.scheduler.timesteps[0]) |
|
else: |
|
latents = self.generate_noise((1, 16, height//8, width//8), seed=seed, device=self.device, dtype=self.torch_dtype) |
|
input_latents = None |
|
return latents, input_latents |
|
|
|
|
|
def prepare_ipadapter(self, ipadapter_images, ipadapter_scale): |
|
if ipadapter_images is not None: |
|
self.load_models_to_device(['ipadapter_image_encoder']) |
|
ipadapter_images = self.prepare_ipadapter_inputs(ipadapter_images) |
|
ipadapter_image_encoding = self.ipadapter_image_encoder(ipadapter_images).pooler_output |
|
self.load_models_to_device(['ipadapter']) |
|
ipadapter_kwargs_list_posi = {"ipadapter_kwargs_list": self.ipadapter(ipadapter_image_encoding, scale=ipadapter_scale)} |
|
ipadapter_kwargs_list_nega = {"ipadapter_kwargs_list": self.ipadapter(torch.zeros_like(ipadapter_image_encoding))} |
|
else: |
|
ipadapter_kwargs_list_posi, ipadapter_kwargs_list_nega = {"ipadapter_kwargs_list": {}}, {"ipadapter_kwargs_list": {}} |
|
return ipadapter_kwargs_list_posi, ipadapter_kwargs_list_nega |
|
|
|
|
|
def prepare_controlnet(self, controlnet_image, masks, controlnet_inpaint_mask, tiler_kwargs, enable_controlnet_on_negative): |
|
if controlnet_image is not None: |
|
self.load_models_to_device(['vae_encoder']) |
|
controlnet_kwargs_posi = {"controlnet_frames": self.prepare_controlnet_input(controlnet_image, controlnet_inpaint_mask, tiler_kwargs)} |
|
if len(masks) > 0 and controlnet_inpaint_mask is not None: |
|
print("The controlnet_inpaint_mask will be overridden by masks.") |
|
local_controlnet_kwargs = [{"controlnet_frames": self.prepare_controlnet_input(controlnet_image, mask, tiler_kwargs)} for mask in masks] |
|
else: |
|
local_controlnet_kwargs = None |
|
else: |
|
controlnet_kwargs_posi, local_controlnet_kwargs = {"controlnet_frames": None}, [{}] * len(masks) |
|
controlnet_kwargs_nega = controlnet_kwargs_posi if enable_controlnet_on_negative else {} |
|
return controlnet_kwargs_posi, controlnet_kwargs_nega, local_controlnet_kwargs |
|
|
|
|
|
def prepare_eligen(self, prompt_emb_nega, eligen_entity_prompts, eligen_entity_masks, width, height, t5_sequence_length, enable_eligen_inpaint, enable_eligen_on_negative, cfg_scale): |
|
if eligen_entity_masks is not None: |
|
entity_prompt_emb_posi, entity_masks_posi, fg_mask, bg_mask = self.prepare_entity_inputs(eligen_entity_prompts, eligen_entity_masks, width, height, t5_sequence_length, enable_eligen_inpaint) |
|
if enable_eligen_on_negative and cfg_scale != 1.0: |
|
entity_prompt_emb_nega = prompt_emb_nega['prompt_emb'].unsqueeze(1).repeat(1, entity_masks_posi.shape[1], 1, 1) |
|
entity_masks_nega = entity_masks_posi |
|
else: |
|
entity_prompt_emb_nega, entity_masks_nega = None, None |
|
else: |
|
entity_prompt_emb_posi, entity_masks_posi, entity_prompt_emb_nega, entity_masks_nega = None, None, None, None |
|
fg_mask, bg_mask = None, None |
|
eligen_kwargs_posi = {"entity_prompt_emb": entity_prompt_emb_posi, "entity_masks": entity_masks_posi} |
|
eligen_kwargs_nega = {"entity_prompt_emb": entity_prompt_emb_nega, "entity_masks": entity_masks_nega} |
|
return eligen_kwargs_posi, eligen_kwargs_nega, fg_mask, bg_mask |
|
|
|
|
|
def prepare_prompts(self, prompt, local_prompts, masks, mask_scales, t5_sequence_length, negative_prompt, cfg_scale): |
|
|
|
self.load_models_to_device(['text_encoder_1', 'text_encoder_2']) |
|
prompt, local_prompts, masks, mask_scales = self.extend_prompt(prompt, local_prompts, masks, mask_scales) |
|
|
|
|
|
prompt_emb_posi = self.encode_prompt(prompt, t5_sequence_length=t5_sequence_length) |
|
prompt_emb_nega = self.encode_prompt(negative_prompt, positive=False, t5_sequence_length=t5_sequence_length) if cfg_scale != 1.0 else None |
|
prompt_emb_locals = [self.encode_prompt(prompt_local, t5_sequence_length=t5_sequence_length) for prompt_local in local_prompts] |
|
return prompt_emb_posi, prompt_emb_nega, prompt_emb_locals |
|
|
|
|
|
@torch.no_grad() |
|
def __call__( |
|
self, |
|
|
|
prompt, |
|
negative_prompt="", |
|
cfg_scale=1.0, |
|
embedded_guidance=3.5, |
|
t5_sequence_length=512, |
|
|
|
input_image=None, |
|
denoising_strength=1.0, |
|
height=1024, |
|
width=1024, |
|
seed=None, |
|
|
|
num_inference_steps=30, |
|
|
|
local_prompts=(), |
|
masks=(), |
|
mask_scales=(), |
|
|
|
controlnet_image=None, |
|
controlnet_inpaint_mask=None, |
|
enable_controlnet_on_negative=False, |
|
|
|
ipadapter_images=None, |
|
ipadapter_scale=1.0, |
|
|
|
eligen_entity_prompts=None, |
|
eligen_entity_masks=None, |
|
enable_eligen_on_negative=False, |
|
enable_eligen_inpaint=False, |
|
|
|
tea_cache_l1_thresh=None, |
|
|
|
tiled=False, |
|
tile_size=128, |
|
tile_stride=64, |
|
|
|
progress_bar_cmd=tqdm, |
|
progress_bar_st=None, |
|
): |
|
height, width = self.check_resize_height_width(height, width) |
|
|
|
|
|
tiler_kwargs = {"tiled": tiled, "tile_size": tile_size, "tile_stride": tile_stride} |
|
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps, denoising_strength) |
|
|
|
|
|
latents, input_latents = self.prepare_latents(input_image, height, width, seed, tiled, tile_size, tile_stride) |
|
|
|
|
|
prompt_emb_posi, prompt_emb_nega, prompt_emb_locals = self.prepare_prompts(prompt, local_prompts, masks, mask_scales, t5_sequence_length, negative_prompt, cfg_scale) |
|
|
|
|
|
extra_input = self.prepare_extra_input(latents, guidance=embedded_guidance) |
|
|
|
|
|
eligen_kwargs_posi, eligen_kwargs_nega, fg_mask, bg_mask = self.prepare_eligen(prompt_emb_nega, eligen_entity_prompts, eligen_entity_masks, width, height, t5_sequence_length, enable_eligen_inpaint, enable_eligen_on_negative, cfg_scale) |
|
|
|
|
|
ipadapter_kwargs_list_posi, ipadapter_kwargs_list_nega = self.prepare_ipadapter(ipadapter_images, ipadapter_scale) |
|
|
|
|
|
controlnet_kwargs_posi, controlnet_kwargs_nega, local_controlnet_kwargs = self.prepare_controlnet(controlnet_image, masks, controlnet_inpaint_mask, tiler_kwargs, enable_controlnet_on_negative) |
|
|
|
|
|
tea_cache_kwargs = {"tea_cache": TeaCache(num_inference_steps, rel_l1_thresh=tea_cache_l1_thresh) if tea_cache_l1_thresh is not None else None} |
|
|
|
|
|
self.load_models_to_device(['dit', 'controlnet']) |
|
for progress_id, timestep in enumerate(progress_bar_cmd(self.scheduler.timesteps)): |
|
timestep = timestep.unsqueeze(0).to(self.device) |
|
|
|
|
|
inference_callback = lambda prompt_emb_posi, controlnet_kwargs: lets_dance_flux( |
|
dit=self.dit, controlnet=self.controlnet, |
|
hidden_states=latents, timestep=timestep, |
|
**prompt_emb_posi, **tiler_kwargs, **extra_input, **controlnet_kwargs, **ipadapter_kwargs_list_posi, **eligen_kwargs_posi, **tea_cache_kwargs, |
|
) |
|
noise_pred_posi = self.control_noise_via_local_prompts( |
|
prompt_emb_posi, prompt_emb_locals, masks, mask_scales, inference_callback, |
|
special_kwargs=controlnet_kwargs_posi, special_local_kwargs_list=local_controlnet_kwargs |
|
) |
|
|
|
|
|
if enable_eligen_inpaint: |
|
noise_pred_posi = self.inpaint_fusion(latents, input_latents, noise_pred_posi, fg_mask, bg_mask, progress_id) |
|
|
|
|
|
if cfg_scale != 1.0: |
|
|
|
noise_pred_nega = lets_dance_flux( |
|
dit=self.dit, controlnet=self.controlnet, |
|
hidden_states=latents, timestep=timestep, |
|
**prompt_emb_nega, **tiler_kwargs, **extra_input, **controlnet_kwargs_nega, **ipadapter_kwargs_list_nega, **eligen_kwargs_nega, |
|
) |
|
noise_pred = noise_pred_nega + cfg_scale * (noise_pred_posi - noise_pred_nega) |
|
else: |
|
noise_pred = noise_pred_posi |
|
|
|
|
|
latents = self.scheduler.step(noise_pred, self.scheduler.timesteps[progress_id], latents) |
|
|
|
|
|
if progress_bar_st is not None: |
|
progress_bar_st.progress(progress_id / len(self.scheduler.timesteps)) |
|
|
|
|
|
self.load_models_to_device(['vae_decoder']) |
|
image = self.decode_image(latents, **tiler_kwargs) |
|
|
|
|
|
self.load_models_to_device([]) |
|
return image |
|
|
|
|
|
class TeaCache: |
|
def __init__(self, num_inference_steps, rel_l1_thresh): |
|
self.num_inference_steps = num_inference_steps |
|
self.step = 0 |
|
self.accumulated_rel_l1_distance = 0 |
|
self.previous_modulated_input = None |
|
self.rel_l1_thresh = rel_l1_thresh |
|
self.previous_residual = None |
|
self.previous_hidden_states = None |
|
|
|
def check(self, dit: FluxDiT, hidden_states, conditioning): |
|
inp = hidden_states.clone() |
|
temb_ = conditioning.clone() |
|
modulated_inp, _, _, _, _ = dit.blocks[0].norm1_a(inp, emb=temb_) |
|
if self.step == 0 or self.step == self.num_inference_steps - 1: |
|
should_calc = True |
|
self.accumulated_rel_l1_distance = 0 |
|
else: |
|
coefficients = [4.98651651e+02, -2.83781631e+02, 5.58554382e+01, -3.82021401e+00, 2.64230861e-01] |
|
rescale_func = np.poly1d(coefficients) |
|
self.accumulated_rel_l1_distance += rescale_func(((modulated_inp-self.previous_modulated_input).abs().mean() / self.previous_modulated_input.abs().mean()).cpu().item()) |
|
if self.accumulated_rel_l1_distance < self.rel_l1_thresh: |
|
should_calc = False |
|
else: |
|
should_calc = True |
|
self.accumulated_rel_l1_distance = 0 |
|
self.previous_modulated_input = modulated_inp |
|
self.step += 1 |
|
if self.step == self.num_inference_steps: |
|
self.step = 0 |
|
if should_calc: |
|
self.previous_hidden_states = hidden_states.clone() |
|
return not should_calc |
|
|
|
def store(self, hidden_states): |
|
self.previous_residual = hidden_states - self.previous_hidden_states |
|
self.previous_hidden_states = None |
|
|
|
def update(self, hidden_states): |
|
hidden_states = hidden_states + self.previous_residual |
|
return hidden_states |
|
|
|
|
|
def lets_dance_flux( |
|
dit: FluxDiT, |
|
controlnet: FluxMultiControlNetManager = None, |
|
hidden_states=None, |
|
timestep=None, |
|
prompt_emb=None, |
|
pooled_prompt_emb=None, |
|
guidance=None, |
|
text_ids=None, |
|
image_ids=None, |
|
controlnet_frames=None, |
|
tiled=False, |
|
tile_size=128, |
|
tile_stride=64, |
|
entity_prompt_emb=None, |
|
entity_masks=None, |
|
ipadapter_kwargs_list={}, |
|
tea_cache: TeaCache = None, |
|
**kwargs |
|
): |
|
if tiled: |
|
def flux_forward_fn(hl, hr, wl, wr): |
|
tiled_controlnet_frames = [f[:, :, hl: hr, wl: wr] for f in controlnet_frames] if controlnet_frames is not None else None |
|
return lets_dance_flux( |
|
dit=dit, |
|
controlnet=controlnet, |
|
hidden_states=hidden_states[:, :, hl: hr, wl: wr], |
|
timestep=timestep, |
|
prompt_emb=prompt_emb, |
|
pooled_prompt_emb=pooled_prompt_emb, |
|
guidance=guidance, |
|
text_ids=text_ids, |
|
image_ids=None, |
|
controlnet_frames=tiled_controlnet_frames, |
|
tiled=False, |
|
**kwargs |
|
) |
|
return FastTileWorker().tiled_forward( |
|
flux_forward_fn, |
|
hidden_states, |
|
tile_size=tile_size, |
|
tile_stride=tile_stride, |
|
tile_device=hidden_states.device, |
|
tile_dtype=hidden_states.dtype |
|
) |
|
|
|
|
|
|
|
if controlnet is not None and controlnet_frames is not None: |
|
controlnet_extra_kwargs = { |
|
"hidden_states": hidden_states, |
|
"timestep": timestep, |
|
"prompt_emb": prompt_emb, |
|
"pooled_prompt_emb": pooled_prompt_emb, |
|
"guidance": guidance, |
|
"text_ids": text_ids, |
|
"image_ids": image_ids, |
|
"tiled": tiled, |
|
"tile_size": tile_size, |
|
"tile_stride": tile_stride, |
|
} |
|
controlnet_res_stack, controlnet_single_res_stack = controlnet( |
|
controlnet_frames, **controlnet_extra_kwargs |
|
) |
|
|
|
if image_ids is None: |
|
image_ids = dit.prepare_image_ids(hidden_states) |
|
|
|
conditioning = dit.time_embedder(timestep, hidden_states.dtype) + dit.pooled_text_embedder(pooled_prompt_emb) |
|
if dit.guidance_embedder is not None: |
|
guidance = guidance * 1000 |
|
conditioning = conditioning + dit.guidance_embedder(guidance, hidden_states.dtype) |
|
|
|
height, width = hidden_states.shape[-2:] |
|
hidden_states = dit.patchify(hidden_states) |
|
hidden_states = dit.x_embedder(hidden_states) |
|
|
|
if entity_prompt_emb is not None and entity_masks is not None: |
|
prompt_emb, image_rotary_emb, attention_mask = dit.process_entity_masks(hidden_states, prompt_emb, entity_prompt_emb, entity_masks, text_ids, image_ids) |
|
else: |
|
prompt_emb = dit.context_embedder(prompt_emb) |
|
image_rotary_emb = dit.pos_embedder(torch.cat((text_ids, image_ids), dim=1)) |
|
attention_mask = None |
|
|
|
|
|
if tea_cache is not None: |
|
tea_cache_update = tea_cache.check(dit, hidden_states, conditioning) |
|
else: |
|
tea_cache_update = False |
|
|
|
if tea_cache_update: |
|
hidden_states = tea_cache.update(hidden_states) |
|
else: |
|
|
|
for block_id, block in enumerate(dit.blocks): |
|
hidden_states, prompt_emb = block( |
|
hidden_states, |
|
prompt_emb, |
|
conditioning, |
|
image_rotary_emb, |
|
attention_mask, |
|
ipadapter_kwargs_list=ipadapter_kwargs_list.get(block_id, None) |
|
) |
|
|
|
if controlnet is not None and controlnet_frames is not None: |
|
hidden_states = hidden_states + controlnet_res_stack[block_id] |
|
|
|
|
|
hidden_states = torch.cat([prompt_emb, hidden_states], dim=1) |
|
num_joint_blocks = len(dit.blocks) |
|
for block_id, block in enumerate(dit.single_blocks): |
|
hidden_states, prompt_emb = block( |
|
hidden_states, |
|
prompt_emb, |
|
conditioning, |
|
image_rotary_emb, |
|
attention_mask, |
|
ipadapter_kwargs_list=ipadapter_kwargs_list.get(block_id + num_joint_blocks, None) |
|
) |
|
|
|
if controlnet is not None and controlnet_frames is not None: |
|
hidden_states[:, prompt_emb.shape[1]:] = hidden_states[:, prompt_emb.shape[1]:] + controlnet_single_res_stack[block_id] |
|
hidden_states = hidden_states[:, prompt_emb.shape[1]:] |
|
|
|
if tea_cache is not None: |
|
tea_cache.store(hidden_states) |
|
|
|
hidden_states = dit.final_norm_out(hidden_states, conditioning) |
|
hidden_states = dit.final_proj_out(hidden_states) |
|
hidden_states = dit.unpatchify(hidden_states, height, width) |
|
|
|
return hidden_states |
|
|