|
from .base_prompter import BasePrompter, tokenize_long_prompt |
|
from ..models.model_manager import ModelManager |
|
from ..models import SDXLTextEncoder, SDXLTextEncoder2 |
|
from transformers import CLIPTokenizer |
|
import torch, os |
|
|
|
|
|
|
|
class SDXLPrompter(BasePrompter): |
|
def __init__( |
|
self, |
|
tokenizer_path=None, |
|
tokenizer_2_path=None |
|
): |
|
if tokenizer_path is None: |
|
base_path = os.path.dirname(os.path.dirname(__file__)) |
|
tokenizer_path = os.path.join(base_path, "tokenizer_configs/stable_diffusion/tokenizer") |
|
if tokenizer_2_path is None: |
|
base_path = os.path.dirname(os.path.dirname(__file__)) |
|
tokenizer_2_path = os.path.join(base_path, "tokenizer_configs/stable_diffusion_xl/tokenizer_2") |
|
super().__init__() |
|
self.tokenizer = CLIPTokenizer.from_pretrained(tokenizer_path) |
|
self.tokenizer_2 = CLIPTokenizer.from_pretrained(tokenizer_2_path) |
|
self.text_encoder: SDXLTextEncoder = None |
|
self.text_encoder_2: SDXLTextEncoder2 = None |
|
|
|
|
|
def fetch_models(self, text_encoder: SDXLTextEncoder = None, text_encoder_2: SDXLTextEncoder2 = None): |
|
self.text_encoder = text_encoder |
|
self.text_encoder_2 = text_encoder_2 |
|
|
|
|
|
def encode_prompt( |
|
self, |
|
prompt, |
|
clip_skip=1, |
|
clip_skip_2=2, |
|
positive=True, |
|
device="cuda" |
|
): |
|
prompt = self.process_prompt(prompt, positive=positive) |
|
|
|
|
|
input_ids = tokenize_long_prompt(self.tokenizer, prompt).to(device) |
|
prompt_emb_1 = self.text_encoder(input_ids, clip_skip=clip_skip) |
|
|
|
|
|
input_ids_2 = tokenize_long_prompt(self.tokenizer_2, prompt).to(device) |
|
add_text_embeds, prompt_emb_2 = self.text_encoder_2(input_ids_2, clip_skip=clip_skip_2) |
|
|
|
|
|
if prompt_emb_1.shape[0] != prompt_emb_2.shape[0]: |
|
max_batch_size = min(prompt_emb_1.shape[0], prompt_emb_2.shape[0]) |
|
prompt_emb_1 = prompt_emb_1[: max_batch_size] |
|
prompt_emb_2 = prompt_emb_2[: max_batch_size] |
|
prompt_emb = torch.concatenate([prompt_emb_1, prompt_emb_2], dim=-1) |
|
|
|
|
|
add_text_embeds = add_text_embeds[0:1] |
|
prompt_emb = prompt_emb.reshape((1, prompt_emb.shape[0]*prompt_emb.shape[1], -1)) |
|
return add_text_embeds, prompt_emb |
|
|