|
from .base_prompter import BasePrompter |
|
from ..models.wan_video_text_encoder import WanTextEncoder |
|
from transformers import AutoTokenizer |
|
import os, torch |
|
import ftfy |
|
import html |
|
import string |
|
import regex as re |
|
|
|
|
|
def basic_clean(text): |
|
text = ftfy.fix_text(text) |
|
text = html.unescape(html.unescape(text)) |
|
return text.strip() |
|
|
|
|
|
def whitespace_clean(text): |
|
text = re.sub(r'\s+', ' ', text) |
|
text = text.strip() |
|
return text |
|
|
|
|
|
def canonicalize(text, keep_punctuation_exact_string=None): |
|
text = text.replace('_', ' ') |
|
if keep_punctuation_exact_string: |
|
text = keep_punctuation_exact_string.join( |
|
part.translate(str.maketrans('', '', string.punctuation)) |
|
for part in text.split(keep_punctuation_exact_string)) |
|
else: |
|
text = text.translate(str.maketrans('', '', string.punctuation)) |
|
text = text.lower() |
|
text = re.sub(r'\s+', ' ', text) |
|
return text.strip() |
|
|
|
|
|
class HuggingfaceTokenizer: |
|
|
|
def __init__(self, name, seq_len=None, clean=None, **kwargs): |
|
assert clean in (None, 'whitespace', 'lower', 'canonicalize') |
|
self.name = name |
|
self.seq_len = seq_len |
|
self.clean = clean |
|
|
|
|
|
self.tokenizer = AutoTokenizer.from_pretrained(name, **kwargs) |
|
self.vocab_size = self.tokenizer.vocab_size |
|
|
|
def __call__(self, sequence, **kwargs): |
|
return_mask = kwargs.pop('return_mask', False) |
|
|
|
|
|
_kwargs = {'return_tensors': 'pt'} |
|
if self.seq_len is not None: |
|
_kwargs.update({ |
|
'padding': 'max_length', |
|
'truncation': True, |
|
'max_length': self.seq_len |
|
}) |
|
_kwargs.update(**kwargs) |
|
|
|
|
|
if isinstance(sequence, str): |
|
sequence = [sequence] |
|
if self.clean: |
|
sequence = [self._clean(u) for u in sequence] |
|
ids = self.tokenizer(sequence, **_kwargs) |
|
|
|
|
|
if return_mask: |
|
return ids.input_ids, ids.attention_mask |
|
else: |
|
return ids.input_ids |
|
|
|
def _clean(self, text): |
|
if self.clean == 'whitespace': |
|
text = whitespace_clean(basic_clean(text)) |
|
elif self.clean == 'lower': |
|
text = whitespace_clean(basic_clean(text)).lower() |
|
elif self.clean == 'canonicalize': |
|
text = canonicalize(basic_clean(text)) |
|
return text |
|
|
|
|
|
class WanPrompter(BasePrompter): |
|
|
|
def __init__(self, tokenizer_path=None, text_len=512): |
|
super().__init__() |
|
self.text_len = text_len |
|
self.text_encoder = None |
|
self.fetch_tokenizer(tokenizer_path) |
|
|
|
def fetch_tokenizer(self, tokenizer_path=None): |
|
if tokenizer_path is not None: |
|
self.tokenizer = HuggingfaceTokenizer(name=tokenizer_path, seq_len=self.text_len, clean='whitespace') |
|
|
|
def fetch_models(self, text_encoder: WanTextEncoder = None): |
|
self.text_encoder = text_encoder |
|
|
|
def encode_prompt(self, prompt, positive=True, device="cuda"): |
|
prompt = self.process_prompt(prompt, positive=positive) |
|
|
|
ids, mask = self.tokenizer(prompt, return_mask=True, add_special_tokens=True) |
|
ids = ids.to(device) |
|
mask = mask.to(device) |
|
seq_lens = mask.gt(0).sum(dim=1).long() |
|
prompt_emb = self.text_encoder(ids, mask) |
|
for i, v in enumerate(seq_lens): |
|
prompt_emb[:, v:] = 0 |
|
return prompt_emb |
|
|