|
import torch, copy |
|
from ..models.utils import init_weights_on_device |
|
|
|
|
|
def cast_to(weight, dtype, device): |
|
r = torch.empty_like(weight, dtype=dtype, device=device) |
|
r.copy_(weight) |
|
return r |
|
|
|
|
|
class AutoWrappedModule(torch.nn.Module): |
|
def __init__(self, module: torch.nn.Module, offload_dtype, offload_device, onload_dtype, onload_device, computation_dtype, computation_device): |
|
super().__init__() |
|
self.module = module.to(dtype=offload_dtype, device=offload_device) |
|
self.offload_dtype = offload_dtype |
|
self.offload_device = offload_device |
|
self.onload_dtype = onload_dtype |
|
self.onload_device = onload_device |
|
self.computation_dtype = computation_dtype |
|
self.computation_device = computation_device |
|
self.state = 0 |
|
|
|
def offload(self): |
|
if self.state == 1 and (self.offload_dtype != self.onload_dtype or self.offload_device != self.onload_device): |
|
self.module.to(dtype=self.offload_dtype, device=self.offload_device) |
|
self.state = 0 |
|
|
|
def onload(self): |
|
if self.state == 0 and (self.offload_dtype != self.onload_dtype or self.offload_device != self.onload_device): |
|
self.module.to(dtype=self.onload_dtype, device=self.onload_device) |
|
self.state = 1 |
|
|
|
def forward(self, *args, **kwargs): |
|
if self.onload_dtype == self.computation_dtype and self.onload_device == self.computation_device: |
|
module = self.module |
|
else: |
|
module = copy.deepcopy(self.module).to(dtype=self.computation_dtype, device=self.computation_device) |
|
return module(*args, **kwargs) |
|
|
|
|
|
class AutoWrappedLinear(torch.nn.Linear): |
|
def __init__(self, module: torch.nn.Linear, offload_dtype, offload_device, onload_dtype, onload_device, computation_dtype, computation_device): |
|
with init_weights_on_device(device=torch.device("meta")): |
|
super().__init__(in_features=module.in_features, out_features=module.out_features, bias=module.bias is not None, dtype=offload_dtype, device=offload_device) |
|
self.weight = module.weight |
|
self.bias = module.bias |
|
self.offload_dtype = offload_dtype |
|
self.offload_device = offload_device |
|
self.onload_dtype = onload_dtype |
|
self.onload_device = onload_device |
|
self.computation_dtype = computation_dtype |
|
self.computation_device = computation_device |
|
self.state = 0 |
|
|
|
def offload(self): |
|
if self.state == 1 and (self.offload_dtype != self.onload_dtype or self.offload_device != self.onload_device): |
|
self.to(dtype=self.offload_dtype, device=self.offload_device) |
|
self.state = 0 |
|
|
|
def onload(self): |
|
if self.state == 0 and (self.offload_dtype != self.onload_dtype or self.offload_device != self.onload_device): |
|
self.to(dtype=self.onload_dtype, device=self.onload_device) |
|
self.state = 1 |
|
|
|
def forward(self, x, *args, **kwargs): |
|
if self.onload_dtype == self.computation_dtype and self.onload_device == self.computation_device: |
|
weight, bias = self.weight, self.bias |
|
else: |
|
weight = cast_to(self.weight, self.computation_dtype, self.computation_device) |
|
bias = None if self.bias is None else cast_to(self.bias, self.computation_dtype, self.computation_device) |
|
return torch.nn.functional.linear(x, weight, bias) |
|
|
|
|
|
def enable_vram_management_recursively(model: torch.nn.Module, module_map: dict, module_config: dict, max_num_param=None, overflow_module_config: dict = None, total_num_param=0): |
|
for name, module in model.named_children(): |
|
for source_module, target_module in module_map.items(): |
|
if isinstance(module, source_module): |
|
num_param = sum(p.numel() for p in module.parameters()) |
|
if max_num_param is not None and total_num_param + num_param > max_num_param: |
|
module_config_ = overflow_module_config |
|
else: |
|
module_config_ = module_config |
|
module_ = target_module(module, **module_config_) |
|
setattr(model, name, module_) |
|
total_num_param += num_param |
|
break |
|
else: |
|
total_num_param = enable_vram_management_recursively(module, module_map, module_config, max_num_param, overflow_module_config, total_num_param) |
|
return total_num_param |
|
|
|
|
|
def enable_vram_management(model: torch.nn.Module, module_map: dict, module_config: dict, max_num_param=None, overflow_module_config: dict = None): |
|
enable_vram_management_recursively(model, module_map, module_config, max_num_param, overflow_module_config, total_num_param=0) |
|
model.vram_management_enabled = True |
|
|
|
|