|
from diffsynth import ModelManager, FluxImagePipeline |
|
from diffsynth.trainers.text_to_image import LightningModelForT2ILoRA, add_general_parsers, launch_training_task |
|
from diffsynth.models.lora import FluxLoRAConverter |
|
import torch, os, argparse |
|
os.environ["TOKENIZERS_PARALLELISM"] = "True" |
|
|
|
|
|
class LightningModel(LightningModelForT2ILoRA): |
|
def __init__( |
|
self, |
|
torch_dtype=torch.float16, pretrained_weights=[], preset_lora_path=None, |
|
learning_rate=1e-4, use_gradient_checkpointing=True, |
|
lora_rank=4, lora_alpha=4, lora_target_modules="to_q,to_k,to_v,to_out", init_lora_weights="kaiming", pretrained_lora_path=None, |
|
state_dict_converter=None, quantize = None |
|
): |
|
super().__init__(learning_rate=learning_rate, use_gradient_checkpointing=use_gradient_checkpointing, state_dict_converter=state_dict_converter) |
|
|
|
model_manager = ModelManager(torch_dtype=torch_dtype, device=self.device) |
|
if quantize is None: |
|
model_manager.load_models(pretrained_weights) |
|
else: |
|
model_manager.load_models(pretrained_weights[1:]) |
|
model_manager.load_model(pretrained_weights[0], torch_dtype=quantize) |
|
if preset_lora_path is not None: |
|
preset_lora_path = preset_lora_path.split(",") |
|
for path in preset_lora_path: |
|
model_manager.load_lora(path) |
|
|
|
self.pipe = FluxImagePipeline.from_model_manager(model_manager) |
|
|
|
if quantize is not None: |
|
self.pipe.dit.quantize() |
|
|
|
self.pipe.scheduler.set_timesteps(1000, training=True) |
|
|
|
self.freeze_parameters() |
|
self.add_lora_to_model( |
|
self.pipe.denoising_model(), |
|
lora_rank=lora_rank, |
|
lora_alpha=lora_alpha, |
|
lora_target_modules=lora_target_modules, |
|
init_lora_weights=init_lora_weights, |
|
pretrained_lora_path=pretrained_lora_path, |
|
state_dict_converter=FluxLoRAConverter.align_to_diffsynth_format |
|
) |
|
|
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser(description="Simple example of a training script.") |
|
parser.add_argument( |
|
"--pretrained_text_encoder_path", |
|
type=str, |
|
default=None, |
|
required=True, |
|
help="Path to pretrained text encoder model. For example, `models/FLUX/FLUX.1-dev/text_encoder/model.safetensors`.", |
|
) |
|
parser.add_argument( |
|
"--pretrained_text_encoder_2_path", |
|
type=str, |
|
default=None, |
|
required=True, |
|
help="Path to pretrained t5 text encoder model. For example, `models/FLUX/FLUX.1-dev/text_encoder_2`.", |
|
) |
|
parser.add_argument( |
|
"--pretrained_dit_path", |
|
type=str, |
|
default=None, |
|
required=True, |
|
help="Path to pretrained dit model. For example, `models/FLUX/FLUX.1-dev/flux1-dev.safetensors`.", |
|
) |
|
parser.add_argument( |
|
"--pretrained_vae_path", |
|
type=str, |
|
default=None, |
|
required=True, |
|
help="Path to pretrained vae model. For example, `models/FLUX/FLUX.1-dev/ae.safetensors`.", |
|
) |
|
parser.add_argument( |
|
"--lora_target_modules", |
|
type=str, |
|
default="a_to_qkv,b_to_qkv,ff_a.0,ff_a.2,ff_b.0,ff_b.2,a_to_out,b_to_out,proj_out,norm.linear,norm1_a.linear,norm1_b.linear,to_qkv_mlp", |
|
help="Layers with LoRA modules.", |
|
) |
|
parser.add_argument( |
|
"--align_to_opensource_format", |
|
default=False, |
|
action="store_true", |
|
help="Whether to export lora files aligned with other opensource format.", |
|
) |
|
parser.add_argument( |
|
"--quantize", |
|
type=str, |
|
default=None, |
|
choices=["float8_e4m3fn"], |
|
help="Whether to use quantization when training the model, and in which format.", |
|
) |
|
parser.add_argument( |
|
"--preset_lora_path", |
|
type=str, |
|
default=None, |
|
help="Preset LoRA path.", |
|
) |
|
parser = add_general_parsers(parser) |
|
args = parser.parse_args() |
|
return args |
|
|
|
|
|
if __name__ == '__main__': |
|
args = parse_args() |
|
model = LightningModel( |
|
torch_dtype={"32": torch.float32, "bf16": torch.bfloat16}.get(args.precision, torch.float16), |
|
pretrained_weights=[args.pretrained_dit_path, args.pretrained_text_encoder_path, args.pretrained_text_encoder_2_path, args.pretrained_vae_path], |
|
preset_lora_path=args.preset_lora_path, |
|
learning_rate=args.learning_rate, |
|
use_gradient_checkpointing=args.use_gradient_checkpointing, |
|
lora_rank=args.lora_rank, |
|
lora_alpha=args.lora_alpha, |
|
lora_target_modules=args.lora_target_modules, |
|
init_lora_weights=args.init_lora_weights, |
|
pretrained_lora_path=args.pretrained_lora_path, |
|
state_dict_converter=FluxLoRAConverter.align_to_opensource_format if args.align_to_opensource_format else None, |
|
quantize={"float8_e4m3fn": torch.float8_e4m3fn}.get(args.quantize, None), |
|
) |
|
launch_training_task(model, args) |
|
|