|
from diffsynth import ModelManager, SDXLImagePipeline |
|
from diffsynth.trainers.text_to_image import LightningModelForT2ILoRA, add_general_parsers, launch_training_task |
|
import torch, os, argparse |
|
os.environ["TOKENIZERS_PARALLELISM"] = "True" |
|
|
|
|
|
class LightningModel(LightningModelForT2ILoRA): |
|
def __init__( |
|
self, |
|
torch_dtype=torch.float16, pretrained_weights=[], |
|
learning_rate=1e-4, use_gradient_checkpointing=True, |
|
lora_rank=4, lora_alpha=4, lora_target_modules="to_q,to_k,to_v,to_out", init_lora_weights="gaussian", pretrained_lora_path=None, |
|
): |
|
super().__init__(learning_rate=learning_rate, use_gradient_checkpointing=use_gradient_checkpointing) |
|
|
|
model_manager = ModelManager(torch_dtype=torch_dtype, device=self.device) |
|
model_manager.load_models(pretrained_weights) |
|
self.pipe = SDXLImagePipeline.from_model_manager(model_manager) |
|
self.pipe.scheduler.set_timesteps(1000) |
|
|
|
self.freeze_parameters() |
|
self.add_lora_to_model( |
|
self.pipe.denoising_model(), |
|
lora_rank=lora_rank, |
|
lora_alpha=lora_alpha, |
|
lora_target_modules=lora_target_modules, |
|
init_lora_weights=init_lora_weights, |
|
pretrained_lora_path=pretrained_lora_path, |
|
) |
|
|
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser(description="Simple example of a training script.") |
|
parser.add_argument( |
|
"--pretrained_path", |
|
type=str, |
|
default=None, |
|
required=True, |
|
help="Path to pretrained model. For example, `models/stable_diffusion_xl/sd_xl_base_1.0.safetensors`.", |
|
) |
|
parser.add_argument( |
|
"--lora_target_modules", |
|
type=str, |
|
default="to_q,to_k,to_v,to_out", |
|
help="Layers with LoRA modules.", |
|
) |
|
parser = add_general_parsers(parser) |
|
args = parser.parse_args() |
|
return args |
|
|
|
|
|
if __name__ == '__main__': |
|
args = parse_args() |
|
model = LightningModel( |
|
torch_dtype=torch.float32 if args.precision == "32" else torch.float16, |
|
pretrained_weights=[args.pretrained_path], |
|
learning_rate=args.learning_rate, |
|
use_gradient_checkpointing=args.use_gradient_checkpointing, |
|
lora_rank=args.lora_rank, |
|
lora_alpha=args.lora_alpha, |
|
init_lora_weights=args.init_lora_weights, |
|
pretrained_lora_path=args.pretrained_lora_path, |
|
lora_target_modules=args.lora_target_modules |
|
) |
|
launch_training_task(model, args) |
|
|