|
import torch, os, imageio, argparse |
|
from torchvision.transforms import v2 |
|
from einops import rearrange |
|
import lightning as pl |
|
import pandas as pd |
|
from diffsynth import WanVideoPipeline, ModelManager, load_state_dict |
|
from peft import LoraConfig, inject_adapter_in_model |
|
import torchvision |
|
from PIL import Image |
|
|
|
|
|
|
|
class TextVideoDataset(torch.utils.data.Dataset): |
|
def __init__(self, base_path, metadata_path, max_num_frames=81, frame_interval=1, num_frames=81, height=480, width=832): |
|
metadata = pd.read_csv(metadata_path) |
|
self.path = [os.path.join(base_path, "train", file_name) for file_name in metadata["file_name"]] |
|
self.text = metadata["text"].to_list() |
|
|
|
self.max_num_frames = max_num_frames |
|
self.frame_interval = frame_interval |
|
self.num_frames = num_frames |
|
self.height = height |
|
self.width = width |
|
|
|
self.frame_process = v2.Compose([ |
|
v2.CenterCrop(size=(height, width)), |
|
v2.Resize(size=(height, width), antialias=True), |
|
v2.ToTensor(), |
|
v2.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]), |
|
]) |
|
|
|
|
|
def crop_and_resize(self, image): |
|
width, height = image.size |
|
scale = max(self.width / width, self.height / height) |
|
image = torchvision.transforms.functional.resize( |
|
image, |
|
(round(height*scale), round(width*scale)), |
|
interpolation=torchvision.transforms.InterpolationMode.BILINEAR |
|
) |
|
return image |
|
|
|
|
|
def load_frames_using_imageio(self, file_path, max_num_frames, start_frame_id, interval, num_frames, frame_process): |
|
reader = imageio.get_reader(file_path) |
|
if reader.count_frames() < max_num_frames or reader.count_frames() - 1 < start_frame_id + (num_frames - 1) * interval: |
|
reader.close() |
|
return None |
|
|
|
frames = [] |
|
for frame_id in range(num_frames): |
|
frame = reader.get_data(start_frame_id + frame_id * interval) |
|
frame = Image.fromarray(frame) |
|
frame = self.crop_and_resize(frame) |
|
frame = frame_process(frame) |
|
frames.append(frame) |
|
reader.close() |
|
|
|
frames = torch.stack(frames, dim=0) |
|
frames = rearrange(frames, "T C H W -> C T H W") |
|
|
|
return frames |
|
|
|
|
|
def load_video(self, file_path): |
|
start_frame_id = torch.randint(0, self.max_num_frames - (self.num_frames - 1) * self.frame_interval, (1,))[0] |
|
frames = self.load_frames_using_imageio(file_path, self.max_num_frames, start_frame_id, self.frame_interval, self.num_frames, self.frame_process) |
|
return frames |
|
|
|
|
|
def is_image(self, file_path): |
|
file_ext_name = file_path.split(".")[-1] |
|
if file_ext_name.lower() in ["jpg", "jpeg", "png", "webp"]: |
|
return True |
|
return False |
|
|
|
|
|
def load_image(self, file_path): |
|
frame = Image.open(file_path).convert("RGB") |
|
frame = self.crop_and_resize(frame) |
|
frame = self.frame_process(frame) |
|
frame = rearrange(frame, "C H W -> C 1 H W") |
|
return frame |
|
|
|
|
|
def __getitem__(self, data_id): |
|
text = self.text[data_id] |
|
path = self.path[data_id] |
|
if self.is_image(path): |
|
video = self.load_image(path) |
|
else: |
|
video = self.load_video(path) |
|
data = {"text": text, "video": video, "path": path} |
|
return data |
|
|
|
|
|
def __len__(self): |
|
return len(self.path) |
|
|
|
|
|
|
|
class LightningModelForDataProcess(pl.LightningModule): |
|
def __init__(self, text_encoder_path, vae_path, tiled=False, tile_size=(34, 34), tile_stride=(18, 16)): |
|
super().__init__() |
|
model_manager = ModelManager(torch_dtype=torch.bfloat16, device="cpu") |
|
model_manager.load_models([text_encoder_path, vae_path]) |
|
self.pipe = WanVideoPipeline.from_model_manager(model_manager) |
|
|
|
self.tiler_kwargs = {"tiled": tiled, "tile_size": tile_size, "tile_stride": tile_stride} |
|
|
|
def test_step(self, batch, batch_idx): |
|
text, video, path = batch["text"][0], batch["video"], batch["path"][0] |
|
self.pipe.device = self.device |
|
if video is not None: |
|
prompt_emb = self.pipe.encode_prompt(text) |
|
video = video.to(dtype=self.pipe.torch_dtype, device=self.pipe.device) |
|
latents = self.pipe.encode_video(video, **self.tiler_kwargs)[0] |
|
data = {"latents": latents, "prompt_emb": prompt_emb} |
|
torch.save(data, path + ".tensors.pth") |
|
|
|
|
|
|
|
class TensorDataset(torch.utils.data.Dataset): |
|
def __init__(self, base_path, metadata_path, steps_per_epoch): |
|
metadata = pd.read_csv(metadata_path) |
|
self.path = [os.path.join(base_path, "train", file_name) for file_name in metadata["file_name"]] |
|
print(len(self.path), "videos in metadata.") |
|
self.path = [i + ".tensors.pth" for i in self.path if os.path.exists(i + ".tensors.pth")] |
|
print(len(self.path), "tensors cached in metadata.") |
|
assert len(self.path) > 0 |
|
|
|
self.steps_per_epoch = steps_per_epoch |
|
|
|
|
|
def __getitem__(self, index): |
|
data_id = torch.randint(0, len(self.path), (1,))[0] |
|
data_id = (data_id + index) % len(self.path) |
|
path = self.path[data_id] |
|
data = torch.load(path, weights_only=True, map_location="cpu") |
|
return data |
|
|
|
|
|
def __len__(self): |
|
return self.steps_per_epoch |
|
|
|
|
|
|
|
class LightningModelForTrain(pl.LightningModule): |
|
def __init__( |
|
self, |
|
dit_path, |
|
learning_rate=1e-5, |
|
lora_rank=4, lora_alpha=4, train_architecture="lora", lora_target_modules="q,k,v,o,ffn.0,ffn.2", init_lora_weights="kaiming", |
|
use_gradient_checkpointing=True, use_gradient_checkpointing_offload=False, |
|
pretrained_lora_path=None |
|
): |
|
super().__init__() |
|
model_manager = ModelManager(torch_dtype=torch.bfloat16, device="cpu") |
|
if os.path.isfile(dit_path): |
|
model_manager.load_models([dit_path]) |
|
else: |
|
dit_path = dit_path.split(",") |
|
model_manager.load_models([dit_path]) |
|
|
|
self.pipe = WanVideoPipeline.from_model_manager(model_manager) |
|
self.pipe.scheduler.set_timesteps(1000, training=True) |
|
self.freeze_parameters() |
|
if train_architecture == "lora": |
|
self.add_lora_to_model( |
|
self.pipe.denoising_model(), |
|
lora_rank=lora_rank, |
|
lora_alpha=lora_alpha, |
|
lora_target_modules=lora_target_modules, |
|
init_lora_weights=init_lora_weights, |
|
pretrained_lora_path=pretrained_lora_path, |
|
) |
|
else: |
|
self.pipe.denoising_model().requires_grad_(True) |
|
|
|
self.learning_rate = learning_rate |
|
self.use_gradient_checkpointing = use_gradient_checkpointing |
|
self.use_gradient_checkpointing_offload = use_gradient_checkpointing_offload |
|
|
|
|
|
def freeze_parameters(self): |
|
|
|
self.pipe.requires_grad_(False) |
|
self.pipe.eval() |
|
self.pipe.denoising_model().train() |
|
|
|
|
|
def add_lora_to_model(self, model, lora_rank=4, lora_alpha=4, lora_target_modules="q,k,v,o,ffn.0,ffn.2", init_lora_weights="kaiming", pretrained_lora_path=None, state_dict_converter=None): |
|
|
|
self.lora_alpha = lora_alpha |
|
if init_lora_weights == "kaiming": |
|
init_lora_weights = True |
|
|
|
lora_config = LoraConfig( |
|
r=lora_rank, |
|
lora_alpha=lora_alpha, |
|
init_lora_weights=init_lora_weights, |
|
target_modules=lora_target_modules.split(","), |
|
) |
|
model = inject_adapter_in_model(lora_config, model) |
|
for param in model.parameters(): |
|
|
|
if param.requires_grad: |
|
param.data = param.to(torch.float32) |
|
|
|
|
|
if pretrained_lora_path is not None: |
|
state_dict = load_state_dict(pretrained_lora_path) |
|
if state_dict_converter is not None: |
|
state_dict = state_dict_converter(state_dict) |
|
missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False) |
|
all_keys = [i for i, _ in model.named_parameters()] |
|
num_updated_keys = len(all_keys) - len(missing_keys) |
|
num_unexpected_keys = len(unexpected_keys) |
|
print(f"{num_updated_keys} parameters are loaded from {pretrained_lora_path}. {num_unexpected_keys} parameters are unexpected.") |
|
|
|
|
|
def training_step(self, batch, batch_idx): |
|
|
|
latents = batch["latents"].to(self.device) |
|
prompt_emb = batch["prompt_emb"] |
|
prompt_emb["context"] = prompt_emb["context"][0].to(self.device) |
|
|
|
|
|
self.pipe.device = self.device |
|
noise = torch.randn_like(latents) |
|
timestep_id = torch.randint(0, self.pipe.scheduler.num_train_timesteps, (1,)) |
|
timestep = self.pipe.scheduler.timesteps[timestep_id].to(dtype=self.pipe.torch_dtype, device=self.pipe.device) |
|
extra_input = self.pipe.prepare_extra_input(latents) |
|
noisy_latents = self.pipe.scheduler.add_noise(latents, noise, timestep) |
|
training_target = self.pipe.scheduler.training_target(latents, noise, timestep) |
|
|
|
|
|
noise_pred = self.pipe.denoising_model()( |
|
noisy_latents, timestep=timestep, **prompt_emb, **extra_input, |
|
use_gradient_checkpointing=self.use_gradient_checkpointing, |
|
use_gradient_checkpointing_offload=self.use_gradient_checkpointing_offload |
|
) |
|
loss = torch.nn.functional.mse_loss(noise_pred.float(), training_target.float()) |
|
loss = loss * self.pipe.scheduler.training_weight(timestep) |
|
|
|
|
|
self.log("train_loss", loss, prog_bar=True) |
|
return loss |
|
|
|
|
|
def configure_optimizers(self): |
|
trainable_modules = filter(lambda p: p.requires_grad, self.pipe.denoising_model().parameters()) |
|
optimizer = torch.optim.AdamW(trainable_modules, lr=self.learning_rate) |
|
return optimizer |
|
|
|
|
|
def on_save_checkpoint(self, checkpoint): |
|
checkpoint.clear() |
|
trainable_param_names = list(filter(lambda named_param: named_param[1].requires_grad, self.pipe.denoising_model().named_parameters())) |
|
trainable_param_names = set([named_param[0] for named_param in trainable_param_names]) |
|
state_dict = self.pipe.denoising_model().state_dict() |
|
lora_state_dict = {} |
|
for name, param in state_dict.items(): |
|
if name in trainable_param_names: |
|
lora_state_dict[name] = param |
|
checkpoint.update(lora_state_dict) |
|
|
|
|
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser(description="Simple example of a training script.") |
|
parser.add_argument( |
|
"--task", |
|
type=str, |
|
default="data_process", |
|
required=True, |
|
choices=["data_process", "train"], |
|
help="Task. `data_process` or `train`.", |
|
) |
|
parser.add_argument( |
|
"--dataset_path", |
|
type=str, |
|
default=None, |
|
required=True, |
|
help="The path of the Dataset.", |
|
) |
|
parser.add_argument( |
|
"--output_path", |
|
type=str, |
|
default="./", |
|
help="Path to save the model.", |
|
) |
|
parser.add_argument( |
|
"--text_encoder_path", |
|
type=str, |
|
default=None, |
|
help="Path of text encoder.", |
|
) |
|
parser.add_argument( |
|
"--vae_path", |
|
type=str, |
|
default=None, |
|
help="Path of VAE.", |
|
) |
|
parser.add_argument( |
|
"--dit_path", |
|
type=str, |
|
default=None, |
|
help="Path of DiT.", |
|
) |
|
parser.add_argument( |
|
"--tiled", |
|
default=False, |
|
action="store_true", |
|
help="Whether enable tile encode in VAE. This option can reduce VRAM required.", |
|
) |
|
parser.add_argument( |
|
"--tile_size_height", |
|
type=int, |
|
default=34, |
|
help="Tile size (height) in VAE.", |
|
) |
|
parser.add_argument( |
|
"--tile_size_width", |
|
type=int, |
|
default=34, |
|
help="Tile size (width) in VAE.", |
|
) |
|
parser.add_argument( |
|
"--tile_stride_height", |
|
type=int, |
|
default=18, |
|
help="Tile stride (height) in VAE.", |
|
) |
|
parser.add_argument( |
|
"--tile_stride_width", |
|
type=int, |
|
default=16, |
|
help="Tile stride (width) in VAE.", |
|
) |
|
parser.add_argument( |
|
"--steps_per_epoch", |
|
type=int, |
|
default=500, |
|
help="Number of steps per epoch.", |
|
) |
|
parser.add_argument( |
|
"--num_frames", |
|
type=int, |
|
default=81, |
|
help="Number of frames.", |
|
) |
|
parser.add_argument( |
|
"--height", |
|
type=int, |
|
default=480, |
|
help="Image height.", |
|
) |
|
parser.add_argument( |
|
"--width", |
|
type=int, |
|
default=832, |
|
help="Image width.", |
|
) |
|
parser.add_argument( |
|
"--dataloader_num_workers", |
|
type=int, |
|
default=1, |
|
help="Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process.", |
|
) |
|
parser.add_argument( |
|
"--learning_rate", |
|
type=float, |
|
default=1e-5, |
|
help="Learning rate.", |
|
) |
|
parser.add_argument( |
|
"--accumulate_grad_batches", |
|
type=int, |
|
default=1, |
|
help="The number of batches in gradient accumulation.", |
|
) |
|
parser.add_argument( |
|
"--max_epochs", |
|
type=int, |
|
default=1, |
|
help="Number of epochs.", |
|
) |
|
parser.add_argument( |
|
"--lora_target_modules", |
|
type=str, |
|
default="q,k,v,o,ffn.0,ffn.2", |
|
help="Layers with LoRA modules.", |
|
) |
|
parser.add_argument( |
|
"--init_lora_weights", |
|
type=str, |
|
default="kaiming", |
|
choices=["gaussian", "kaiming"], |
|
help="The initializing method of LoRA weight.", |
|
) |
|
parser.add_argument( |
|
"--training_strategy", |
|
type=str, |
|
default="auto", |
|
choices=["auto", "deepspeed_stage_1", "deepspeed_stage_2", "deepspeed_stage_3"], |
|
help="Training strategy", |
|
) |
|
parser.add_argument( |
|
"--lora_rank", |
|
type=int, |
|
default=4, |
|
help="The dimension of the LoRA update matrices.", |
|
) |
|
parser.add_argument( |
|
"--lora_alpha", |
|
type=float, |
|
default=4.0, |
|
help="The weight of the LoRA update matrices.", |
|
) |
|
parser.add_argument( |
|
"--use_gradient_checkpointing", |
|
default=False, |
|
action="store_true", |
|
help="Whether to use gradient checkpointing.", |
|
) |
|
parser.add_argument( |
|
"--use_gradient_checkpointing_offload", |
|
default=False, |
|
action="store_true", |
|
help="Whether to use gradient checkpointing offload.", |
|
) |
|
parser.add_argument( |
|
"--train_architecture", |
|
type=str, |
|
default="lora", |
|
choices=["lora", "full"], |
|
help="Model structure to train. LoRA training or full training.", |
|
) |
|
parser.add_argument( |
|
"--pretrained_lora_path", |
|
type=str, |
|
default=None, |
|
help="Pretrained LoRA path. Required if the training is resumed.", |
|
) |
|
parser.add_argument( |
|
"--use_swanlab", |
|
default=False, |
|
action="store_true", |
|
help="Whether to use SwanLab logger.", |
|
) |
|
parser.add_argument( |
|
"--swanlab_mode", |
|
default=None, |
|
help="SwanLab mode (cloud or local).", |
|
) |
|
args = parser.parse_args() |
|
return args |
|
|
|
|
|
def data_process(args): |
|
dataset = TextVideoDataset( |
|
args.dataset_path, |
|
os.path.join(args.dataset_path, "metadata.csv"), |
|
max_num_frames=args.num_frames, |
|
frame_interval=1, |
|
num_frames=args.num_frames, |
|
height=args.height, |
|
width=args.width |
|
) |
|
dataloader = torch.utils.data.DataLoader( |
|
dataset, |
|
shuffle=False, |
|
batch_size=1, |
|
num_workers=args.dataloader_num_workers |
|
) |
|
model = LightningModelForDataProcess( |
|
text_encoder_path=args.text_encoder_path, |
|
vae_path=args.vae_path, |
|
tiled=args.tiled, |
|
tile_size=(args.tile_size_height, args.tile_size_width), |
|
tile_stride=(args.tile_stride_height, args.tile_stride_width), |
|
) |
|
trainer = pl.Trainer( |
|
accelerator="gpu", |
|
devices="auto", |
|
default_root_dir=args.output_path, |
|
) |
|
trainer.test(model, dataloader) |
|
|
|
|
|
def train(args): |
|
dataset = TensorDataset( |
|
args.dataset_path, |
|
os.path.join(args.dataset_path, "metadata.csv"), |
|
steps_per_epoch=args.steps_per_epoch, |
|
) |
|
dataloader = torch.utils.data.DataLoader( |
|
dataset, |
|
shuffle=True, |
|
batch_size=1, |
|
num_workers=args.dataloader_num_workers |
|
) |
|
model = LightningModelForTrain( |
|
dit_path=args.dit_path, |
|
learning_rate=args.learning_rate, |
|
train_architecture=args.train_architecture, |
|
lora_rank=args.lora_rank, |
|
lora_alpha=args.lora_alpha, |
|
lora_target_modules=args.lora_target_modules, |
|
init_lora_weights=args.init_lora_weights, |
|
use_gradient_checkpointing=args.use_gradient_checkpointing, |
|
use_gradient_checkpointing_offload=args.use_gradient_checkpointing_offload, |
|
pretrained_lora_path=args.pretrained_lora_path, |
|
) |
|
if args.use_swanlab: |
|
from swanlab.integration.pytorch_lightning import SwanLabLogger |
|
swanlab_config = {"UPPERFRAMEWORK": "DiffSynth-Studio"} |
|
swanlab_config.update(vars(args)) |
|
swanlab_logger = SwanLabLogger( |
|
project="wan", |
|
name="wan", |
|
config=swanlab_config, |
|
mode=args.swanlab_mode, |
|
logdir=os.path.join(args.output_path, "swanlog"), |
|
) |
|
logger = [swanlab_logger] |
|
else: |
|
logger = None |
|
trainer = pl.Trainer( |
|
max_epochs=args.max_epochs, |
|
accelerator="gpu", |
|
devices="auto", |
|
precision="bf16", |
|
strategy=args.training_strategy, |
|
default_root_dir=args.output_path, |
|
accumulate_grad_batches=args.accumulate_grad_batches, |
|
callbacks=[pl.pytorch.callbacks.ModelCheckpoint(save_top_k=-1)], |
|
logger=logger, |
|
) |
|
trainer.fit(model, dataloader) |
|
|
|
|
|
if __name__ == '__main__': |
|
args = parse_args() |
|
if args.task == "data_process": |
|
data_process(args) |
|
elif args.task == "train": |
|
train(args) |
|
|