Wav2 / examples /wanvideo /train_wan_t2v.py
vidfom's picture
Upload folder using huggingface_hub
79dc332 verified
import torch, os, imageio, argparse
from torchvision.transforms import v2
from einops import rearrange
import lightning as pl
import pandas as pd
from diffsynth import WanVideoPipeline, ModelManager, load_state_dict
from peft import LoraConfig, inject_adapter_in_model
import torchvision
from PIL import Image
class TextVideoDataset(torch.utils.data.Dataset):
def __init__(self, base_path, metadata_path, max_num_frames=81, frame_interval=1, num_frames=81, height=480, width=832):
metadata = pd.read_csv(metadata_path)
self.path = [os.path.join(base_path, "train", file_name) for file_name in metadata["file_name"]]
self.text = metadata["text"].to_list()
self.max_num_frames = max_num_frames
self.frame_interval = frame_interval
self.num_frames = num_frames
self.height = height
self.width = width
self.frame_process = v2.Compose([
v2.CenterCrop(size=(height, width)),
v2.Resize(size=(height, width), antialias=True),
v2.ToTensor(),
v2.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
])
def crop_and_resize(self, image):
width, height = image.size
scale = max(self.width / width, self.height / height)
image = torchvision.transforms.functional.resize(
image,
(round(height*scale), round(width*scale)),
interpolation=torchvision.transforms.InterpolationMode.BILINEAR
)
return image
def load_frames_using_imageio(self, file_path, max_num_frames, start_frame_id, interval, num_frames, frame_process):
reader = imageio.get_reader(file_path)
if reader.count_frames() < max_num_frames or reader.count_frames() - 1 < start_frame_id + (num_frames - 1) * interval:
reader.close()
return None
frames = []
for frame_id in range(num_frames):
frame = reader.get_data(start_frame_id + frame_id * interval)
frame = Image.fromarray(frame)
frame = self.crop_and_resize(frame)
frame = frame_process(frame)
frames.append(frame)
reader.close()
frames = torch.stack(frames, dim=0)
frames = rearrange(frames, "T C H W -> C T H W")
return frames
def load_video(self, file_path):
start_frame_id = torch.randint(0, self.max_num_frames - (self.num_frames - 1) * self.frame_interval, (1,))[0]
frames = self.load_frames_using_imageio(file_path, self.max_num_frames, start_frame_id, self.frame_interval, self.num_frames, self.frame_process)
return frames
def is_image(self, file_path):
file_ext_name = file_path.split(".")[-1]
if file_ext_name.lower() in ["jpg", "jpeg", "png", "webp"]:
return True
return False
def load_image(self, file_path):
frame = Image.open(file_path).convert("RGB")
frame = self.crop_and_resize(frame)
frame = self.frame_process(frame)
frame = rearrange(frame, "C H W -> C 1 H W")
return frame
def __getitem__(self, data_id):
text = self.text[data_id]
path = self.path[data_id]
if self.is_image(path):
video = self.load_image(path)
else:
video = self.load_video(path)
data = {"text": text, "video": video, "path": path}
return data
def __len__(self):
return len(self.path)
class LightningModelForDataProcess(pl.LightningModule):
def __init__(self, text_encoder_path, vae_path, tiled=False, tile_size=(34, 34), tile_stride=(18, 16)):
super().__init__()
model_manager = ModelManager(torch_dtype=torch.bfloat16, device="cpu")
model_manager.load_models([text_encoder_path, vae_path])
self.pipe = WanVideoPipeline.from_model_manager(model_manager)
self.tiler_kwargs = {"tiled": tiled, "tile_size": tile_size, "tile_stride": tile_stride}
def test_step(self, batch, batch_idx):
text, video, path = batch["text"][0], batch["video"], batch["path"][0]
self.pipe.device = self.device
if video is not None:
prompt_emb = self.pipe.encode_prompt(text)
video = video.to(dtype=self.pipe.torch_dtype, device=self.pipe.device)
latents = self.pipe.encode_video(video, **self.tiler_kwargs)[0]
data = {"latents": latents, "prompt_emb": prompt_emb}
torch.save(data, path + ".tensors.pth")
class TensorDataset(torch.utils.data.Dataset):
def __init__(self, base_path, metadata_path, steps_per_epoch):
metadata = pd.read_csv(metadata_path)
self.path = [os.path.join(base_path, "train", file_name) for file_name in metadata["file_name"]]
print(len(self.path), "videos in metadata.")
self.path = [i + ".tensors.pth" for i in self.path if os.path.exists(i + ".tensors.pth")]
print(len(self.path), "tensors cached in metadata.")
assert len(self.path) > 0
self.steps_per_epoch = steps_per_epoch
def __getitem__(self, index):
data_id = torch.randint(0, len(self.path), (1,))[0]
data_id = (data_id + index) % len(self.path) # For fixed seed.
path = self.path[data_id]
data = torch.load(path, weights_only=True, map_location="cpu")
return data
def __len__(self):
return self.steps_per_epoch
class LightningModelForTrain(pl.LightningModule):
def __init__(
self,
dit_path,
learning_rate=1e-5,
lora_rank=4, lora_alpha=4, train_architecture="lora", lora_target_modules="q,k,v,o,ffn.0,ffn.2", init_lora_weights="kaiming",
use_gradient_checkpointing=True, use_gradient_checkpointing_offload=False,
pretrained_lora_path=None
):
super().__init__()
model_manager = ModelManager(torch_dtype=torch.bfloat16, device="cpu")
if os.path.isfile(dit_path):
model_manager.load_models([dit_path])
else:
dit_path = dit_path.split(",")
model_manager.load_models([dit_path])
self.pipe = WanVideoPipeline.from_model_manager(model_manager)
self.pipe.scheduler.set_timesteps(1000, training=True)
self.freeze_parameters()
if train_architecture == "lora":
self.add_lora_to_model(
self.pipe.denoising_model(),
lora_rank=lora_rank,
lora_alpha=lora_alpha,
lora_target_modules=lora_target_modules,
init_lora_weights=init_lora_weights,
pretrained_lora_path=pretrained_lora_path,
)
else:
self.pipe.denoising_model().requires_grad_(True)
self.learning_rate = learning_rate
self.use_gradient_checkpointing = use_gradient_checkpointing
self.use_gradient_checkpointing_offload = use_gradient_checkpointing_offload
def freeze_parameters(self):
# Freeze parameters
self.pipe.requires_grad_(False)
self.pipe.eval()
self.pipe.denoising_model().train()
def add_lora_to_model(self, model, lora_rank=4, lora_alpha=4, lora_target_modules="q,k,v,o,ffn.0,ffn.2", init_lora_weights="kaiming", pretrained_lora_path=None, state_dict_converter=None):
# Add LoRA to UNet
self.lora_alpha = lora_alpha
if init_lora_weights == "kaiming":
init_lora_weights = True
lora_config = LoraConfig(
r=lora_rank,
lora_alpha=lora_alpha,
init_lora_weights=init_lora_weights,
target_modules=lora_target_modules.split(","),
)
model = inject_adapter_in_model(lora_config, model)
for param in model.parameters():
# Upcast LoRA parameters into fp32
if param.requires_grad:
param.data = param.to(torch.float32)
# Lora pretrained lora weights
if pretrained_lora_path is not None:
state_dict = load_state_dict(pretrained_lora_path)
if state_dict_converter is not None:
state_dict = state_dict_converter(state_dict)
missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False)
all_keys = [i for i, _ in model.named_parameters()]
num_updated_keys = len(all_keys) - len(missing_keys)
num_unexpected_keys = len(unexpected_keys)
print(f"{num_updated_keys} parameters are loaded from {pretrained_lora_path}. {num_unexpected_keys} parameters are unexpected.")
def training_step(self, batch, batch_idx):
# Data
latents = batch["latents"].to(self.device)
prompt_emb = batch["prompt_emb"]
prompt_emb["context"] = prompt_emb["context"][0].to(self.device)
# Loss
self.pipe.device = self.device
noise = torch.randn_like(latents)
timestep_id = torch.randint(0, self.pipe.scheduler.num_train_timesteps, (1,))
timestep = self.pipe.scheduler.timesteps[timestep_id].to(dtype=self.pipe.torch_dtype, device=self.pipe.device)
extra_input = self.pipe.prepare_extra_input(latents)
noisy_latents = self.pipe.scheduler.add_noise(latents, noise, timestep)
training_target = self.pipe.scheduler.training_target(latents, noise, timestep)
# Compute loss
noise_pred = self.pipe.denoising_model()(
noisy_latents, timestep=timestep, **prompt_emb, **extra_input,
use_gradient_checkpointing=self.use_gradient_checkpointing,
use_gradient_checkpointing_offload=self.use_gradient_checkpointing_offload
)
loss = torch.nn.functional.mse_loss(noise_pred.float(), training_target.float())
loss = loss * self.pipe.scheduler.training_weight(timestep)
# Record log
self.log("train_loss", loss, prog_bar=True)
return loss
def configure_optimizers(self):
trainable_modules = filter(lambda p: p.requires_grad, self.pipe.denoising_model().parameters())
optimizer = torch.optim.AdamW(trainable_modules, lr=self.learning_rate)
return optimizer
def on_save_checkpoint(self, checkpoint):
checkpoint.clear()
trainable_param_names = list(filter(lambda named_param: named_param[1].requires_grad, self.pipe.denoising_model().named_parameters()))
trainable_param_names = set([named_param[0] for named_param in trainable_param_names])
state_dict = self.pipe.denoising_model().state_dict()
lora_state_dict = {}
for name, param in state_dict.items():
if name in trainable_param_names:
lora_state_dict[name] = param
checkpoint.update(lora_state_dict)
def parse_args():
parser = argparse.ArgumentParser(description="Simple example of a training script.")
parser.add_argument(
"--task",
type=str,
default="data_process",
required=True,
choices=["data_process", "train"],
help="Task. `data_process` or `train`.",
)
parser.add_argument(
"--dataset_path",
type=str,
default=None,
required=True,
help="The path of the Dataset.",
)
parser.add_argument(
"--output_path",
type=str,
default="./",
help="Path to save the model.",
)
parser.add_argument(
"--text_encoder_path",
type=str,
default=None,
help="Path of text encoder.",
)
parser.add_argument(
"--vae_path",
type=str,
default=None,
help="Path of VAE.",
)
parser.add_argument(
"--dit_path",
type=str,
default=None,
help="Path of DiT.",
)
parser.add_argument(
"--tiled",
default=False,
action="store_true",
help="Whether enable tile encode in VAE. This option can reduce VRAM required.",
)
parser.add_argument(
"--tile_size_height",
type=int,
default=34,
help="Tile size (height) in VAE.",
)
parser.add_argument(
"--tile_size_width",
type=int,
default=34,
help="Tile size (width) in VAE.",
)
parser.add_argument(
"--tile_stride_height",
type=int,
default=18,
help="Tile stride (height) in VAE.",
)
parser.add_argument(
"--tile_stride_width",
type=int,
default=16,
help="Tile stride (width) in VAE.",
)
parser.add_argument(
"--steps_per_epoch",
type=int,
default=500,
help="Number of steps per epoch.",
)
parser.add_argument(
"--num_frames",
type=int,
default=81,
help="Number of frames.",
)
parser.add_argument(
"--height",
type=int,
default=480,
help="Image height.",
)
parser.add_argument(
"--width",
type=int,
default=832,
help="Image width.",
)
parser.add_argument(
"--dataloader_num_workers",
type=int,
default=1,
help="Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process.",
)
parser.add_argument(
"--learning_rate",
type=float,
default=1e-5,
help="Learning rate.",
)
parser.add_argument(
"--accumulate_grad_batches",
type=int,
default=1,
help="The number of batches in gradient accumulation.",
)
parser.add_argument(
"--max_epochs",
type=int,
default=1,
help="Number of epochs.",
)
parser.add_argument(
"--lora_target_modules",
type=str,
default="q,k,v,o,ffn.0,ffn.2",
help="Layers with LoRA modules.",
)
parser.add_argument(
"--init_lora_weights",
type=str,
default="kaiming",
choices=["gaussian", "kaiming"],
help="The initializing method of LoRA weight.",
)
parser.add_argument(
"--training_strategy",
type=str,
default="auto",
choices=["auto", "deepspeed_stage_1", "deepspeed_stage_2", "deepspeed_stage_3"],
help="Training strategy",
)
parser.add_argument(
"--lora_rank",
type=int,
default=4,
help="The dimension of the LoRA update matrices.",
)
parser.add_argument(
"--lora_alpha",
type=float,
default=4.0,
help="The weight of the LoRA update matrices.",
)
parser.add_argument(
"--use_gradient_checkpointing",
default=False,
action="store_true",
help="Whether to use gradient checkpointing.",
)
parser.add_argument(
"--use_gradient_checkpointing_offload",
default=False,
action="store_true",
help="Whether to use gradient checkpointing offload.",
)
parser.add_argument(
"--train_architecture",
type=str,
default="lora",
choices=["lora", "full"],
help="Model structure to train. LoRA training or full training.",
)
parser.add_argument(
"--pretrained_lora_path",
type=str,
default=None,
help="Pretrained LoRA path. Required if the training is resumed.",
)
parser.add_argument(
"--use_swanlab",
default=False,
action="store_true",
help="Whether to use SwanLab logger.",
)
parser.add_argument(
"--swanlab_mode",
default=None,
help="SwanLab mode (cloud or local).",
)
args = parser.parse_args()
return args
def data_process(args):
dataset = TextVideoDataset(
args.dataset_path,
os.path.join(args.dataset_path, "metadata.csv"),
max_num_frames=args.num_frames,
frame_interval=1,
num_frames=args.num_frames,
height=args.height,
width=args.width
)
dataloader = torch.utils.data.DataLoader(
dataset,
shuffle=False,
batch_size=1,
num_workers=args.dataloader_num_workers
)
model = LightningModelForDataProcess(
text_encoder_path=args.text_encoder_path,
vae_path=args.vae_path,
tiled=args.tiled,
tile_size=(args.tile_size_height, args.tile_size_width),
tile_stride=(args.tile_stride_height, args.tile_stride_width),
)
trainer = pl.Trainer(
accelerator="gpu",
devices="auto",
default_root_dir=args.output_path,
)
trainer.test(model, dataloader)
def train(args):
dataset = TensorDataset(
args.dataset_path,
os.path.join(args.dataset_path, "metadata.csv"),
steps_per_epoch=args.steps_per_epoch,
)
dataloader = torch.utils.data.DataLoader(
dataset,
shuffle=True,
batch_size=1,
num_workers=args.dataloader_num_workers
)
model = LightningModelForTrain(
dit_path=args.dit_path,
learning_rate=args.learning_rate,
train_architecture=args.train_architecture,
lora_rank=args.lora_rank,
lora_alpha=args.lora_alpha,
lora_target_modules=args.lora_target_modules,
init_lora_weights=args.init_lora_weights,
use_gradient_checkpointing=args.use_gradient_checkpointing,
use_gradient_checkpointing_offload=args.use_gradient_checkpointing_offload,
pretrained_lora_path=args.pretrained_lora_path,
)
if args.use_swanlab:
from swanlab.integration.pytorch_lightning import SwanLabLogger
swanlab_config = {"UPPERFRAMEWORK": "DiffSynth-Studio"}
swanlab_config.update(vars(args))
swanlab_logger = SwanLabLogger(
project="wan",
name="wan",
config=swanlab_config,
mode=args.swanlab_mode,
logdir=os.path.join(args.output_path, "swanlog"),
)
logger = [swanlab_logger]
else:
logger = None
trainer = pl.Trainer(
max_epochs=args.max_epochs,
accelerator="gpu",
devices="auto",
precision="bf16",
strategy=args.training_strategy,
default_root_dir=args.output_path,
accumulate_grad_batches=args.accumulate_grad_batches,
callbacks=[pl.pytorch.callbacks.ModelCheckpoint(save_top_k=-1)],
logger=logger,
)
trainer.fit(model, dataloader)
if __name__ == '__main__':
args = parse_args()
if args.task == "data_process":
data_process(args)
elif args.task == "train":
train(args)