whisper-medium-ta-en
This model is a fine-tuned version of openai/whisper-medium on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1186
- Bleu Score: 0.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- training_steps: 3000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Bleu Score |
---|---|---|---|---|
0.1809 | 2.9412 | 250 | 0.0752 | 0.0 |
0.0082 | 5.8824 | 500 | 0.0883 | 0.0053 |
0.0008 | 8.8235 | 750 | 0.0959 | 0.0039 |
0.0003 | 11.7647 | 1000 | 0.1009 | 0.0045 |
0.0002 | 14.7059 | 1250 | 0.1052 | 0.0 |
0.0002 | 17.6471 | 1500 | 0.1089 | 0.0 |
0.0001 | 20.5882 | 1750 | 0.1119 | 0.0032 |
0.0001 | 23.5294 | 2000 | 0.1147 | 0.0 |
0.0001 | 26.4706 | 2250 | 0.1163 | 0.0 |
0.0001 | 29.4118 | 2500 | 0.1175 | 0.0 |
0.0001 | 32.3529 | 2750 | 0.1182 | 0.0 |
0.0001 | 35.2941 | 3000 | 0.1186 | 0.0 |
Framework versions
- Transformers 4.48.3
- Pytorch 2.6.0+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 2
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for vrclc/whisper-medium-ta-en
Base model
openai/whisper-medium