whisper-medium-ta-en

This model is a fine-tuned version of openai/whisper-medium on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1186
  • Bleu Score: 0.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • training_steps: 3000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Bleu Score
0.1809 2.9412 250 0.0752 0.0
0.0082 5.8824 500 0.0883 0.0053
0.0008 8.8235 750 0.0959 0.0039
0.0003 11.7647 1000 0.1009 0.0045
0.0002 14.7059 1250 0.1052 0.0
0.0002 17.6471 1500 0.1089 0.0
0.0001 20.5882 1750 0.1119 0.0032
0.0001 23.5294 2000 0.1147 0.0
0.0001 26.4706 2250 0.1163 0.0
0.0001 29.4118 2500 0.1175 0.0
0.0001 32.3529 2750 0.1182 0.0
0.0001 35.2941 3000 0.1186 0.0

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
2
Safetensors
Model size
764M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for vrclc/whisper-medium-ta-en

Finetuned
(576)
this model