whitneyten's picture
End of training
bdfeab6 verified
---
library_name: transformers
language:
- id
license: mit
base_model: pyannote/speaker-diarization-3.1
tags:
- speaker-diarization
- speaker-segmentation
- modality:audio
- modality:text
- format:parquet
- generated_from_trainer
datasets:
- speaker-segmentation
model-index:
- name: speaker-segmentation-fine-tuned-id-2603
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# speaker-segmentation-fine-tuned-id-2603
This model is a fine-tuned version of [pyannote/speaker-diarization-3.1](https://huggingface.co/pyannote/speaker-diarization-3.1) on the speaker-segmentation dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7019
- Model Preparation Time: 0.0038
- Der: 0.2255
- False Alarm: 0.0699
- Missed Detection: 0.0388
- Confusion: 0.1168
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Der | False Alarm | Missed Detection | Confusion |
|:-------------:|:-----:|:----:|:---------------:|:----------------------:|:------:|:-----------:|:----------------:|:---------:|
| 0.7173 | 1.0 | 99 | 0.7460 | 0.0038 | 0.2482 | 0.0758 | 0.0436 | 0.1288 |
| 0.6364 | 2.0 | 198 | 0.6885 | 0.0038 | 0.2301 | 0.0710 | 0.0429 | 0.1162 |
| 0.5832 | 3.0 | 297 | 0.6896 | 0.0038 | 0.2238 | 0.0717 | 0.0372 | 0.1149 |
| 0.5552 | 4.0 | 396 | 0.6964 | 0.0038 | 0.2249 | 0.0700 | 0.0387 | 0.1162 |
| 0.5303 | 5.0 | 495 | 0.7019 | 0.0038 | 0.2255 | 0.0699 | 0.0388 | 0.1168 |
### Framework versions
- Transformers 4.50.0
- Pytorch 2.6.0+cu124
- Datasets 3.4.1
- Tokenizers 0.21.1