XLM-RoBERTa base Universal Dependencies v2.8 POS tagging: Latin
This model is part of our paper called:
- Make the Best of Cross-lingual Transfer: Evidence from POS Tagging with over 100 Languages
Check the Space for more details.
Usage
from transformers import AutoTokenizer, AutoModelForTokenClassification
tokenizer = AutoTokenizer.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-la")
model = AutoModelForTokenClassification.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-la")
- Downloads last month
- 2
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Dataset used to train wietsedv/xlm-roberta-base-ft-udpos28-la
Space using wietsedv/xlm-roberta-base-ft-udpos28-la 1
Evaluation results
- English Test accuracy on Universal Dependencies v2.8self-reported81.500
- Dutch Test accuracy on Universal Dependencies v2.8self-reported79.600
- German Test accuracy on Universal Dependencies v2.8self-reported78.200
- Italian Test accuracy on Universal Dependencies v2.8self-reported78.000
- French Test accuracy on Universal Dependencies v2.8self-reported78.100
- Spanish Test accuracy on Universal Dependencies v2.8self-reported79.800
- Russian Test accuracy on Universal Dependencies v2.8self-reported89.800
- Swedish Test accuracy on Universal Dependencies v2.8self-reported86.000
- Norwegian Test accuracy on Universal Dependencies v2.8self-reported81.500
- Danish Test accuracy on Universal Dependencies v2.8self-reported85.700